03.06.2

 Chapter 03.06
False-Position Method of Solving a Nonlinear Equation 03.06.3

Chapter 03.06
False-Position Method of Solving a Nonlinear Equation
After reading this chapter, you should be able to

1. follow the algorithm of the false-position method of solving a nonlinear equation,

2. apply the false-position method to find roots of a nonlinear equation.

Introduction

In Chapter 03.03, the bisection method was described as one of the simple bracketing methods of solving a nonlinear equation of the general form

[image: image1.wmf]0

)

(

=

x

f

 (1)

[image: image2.emf] 

U

x f

U

x

r

x

 

L

x f

L

x

O



x f

x

Exact root

Figure 1 False-Position Method
The above nonlinear equation can be stated as finding the value of x such that Equation (1) is satisfied.
In the bisection method, we identify proper values of
[image: image3.wmf]L

x

 (lower bound value) and
[image: image4.wmf]U

x

 (upper bound value) for the current bracket, such that

[image: image5.wmf]0

)

(

)

(

<

U

L

x

f

x

f

. (2)

The next predicted/improved root
[image: image6.wmf]r

x

 can be computed as the midpoint between
[image: image7.wmf]L

x

 and
[image: image8.wmf]U

x

 as

[image: image9.wmf]2

U

L

r

x

x

x

+

=

 (3)

The new upper and lower bounds are then established, and the procedure is repeated until the convergence is achieved (such that the new lower and upper bounds are sufficiently close to each other).

However, in the example shown in Figure 1, the bisection method may not be efficient because it does not take into consideration that
[image: image10.wmf])

(

L

x

f

 is much closer to the zero of the function
[image: image11.wmf])

(

x

f

 as compared to
[image: image12.wmf])

(

U

x

f

. In other words, the next predicted root
[image: image13.wmf]r

x

 would be closer to
[image: image14.wmf]L

x

 (in the example as shown in Figure 1), than the mid-point between
[image: image15.wmf]L

x

 and
[image: image16.wmf]U

x

 . The false-position method takes advantage of this observation mathematically by drawing a secant from the function value at
[image: image17.wmf]L

x

 to the function value at
[image: image18.wmf]U

x

, and estimates the root as where it crosses the x-axis.
False-Position Method

Based on two similar triangles, shown in Figure 1, one gets

[image: image19.wmf]U

r

U

L

r

L

x

x

x

f

x

x

x

f

-

-

=

-

-

)

(

0

)

(

0

 (4)

From Equation (4), one obtains

[image: image20.wmf](

)

(

)

(

)

(

)

L

U

r

U

L

r

x

f

x

x

x

f

x

x

-

=

-

[image: image21.wmf](

)

(

)

(

)

(

)

{

}

U

L

r

U

L

L

U

x

f

x

f

x

x

f

x

x

f

x

-

=

-

The above equation can be solved to obtain the next predicted root
[image: image22.wmf]m

x

 as

[image: image23.wmf](

)

(

)

(

)

(

)

U

L

U

L

L

U

r

x

f

x

f

x

f

x

x

f

x

x

-

-

=

 (5)

The above equation, through simple algebraic manipulations, can also be expressed as

[image: image24.wmf](

)

(

)

(

)

þ

ý

ü

î

í

ì

-

-

-

=

U

L

U

L

U

U

r

x

x

x

f

x

f

x

f

x

x

 (6)
or

[image: image25.wmf](

)

(

)

(

)

þ

ý

ü

î

í

ì

-

-

-

=

L

U

L

U

L

L

r

x

x

x

f

x

f

x

f

x

x

 (7)
Observe the resemblance of Equations (6) and (7) to the secant method.

False-Position Algorithm

The steps to apply the false-position method to find the root of the equation
[image: image26.wmf](

)

0

=

x

f

are as follows.

1. Choose
[image: image27.wmf]L

x

and
[image: image28.wmf]U

x

 as two guesses for the root such that
[image: image29.wmf](

)

(

)

0

<

U

L

x

f

x

f

, or in other words,
[image: image30.wmf](

)

x

f

 changes sign between
[image: image31.wmf]L

x

 and
[image: image32.wmf]U

x

.
2. Estimate the root,
[image: image33.wmf]r

x

 of the equation
[image: image34.wmf](

)

0

=

x

f

as

[image: image35.wmf](

)

(

)

(

)

(

)

U

L

U

L

L

U

r

x

f

x

f

x

f

x

x

f

x

x

-

-

=

3. Now check the following
If
[image: image36.wmf](

)

(

)

0

<

r

L

x

f

x

f

, then the root lies between
[image: image37.wmf]L

x

 and
[image: image38.wmf]r

x

; then
[image: image39.wmf]L

L

x

x

=

 and
[image: image40.wmf]r

U

x

x

=

.
If
[image: image41.wmf](

)

(

)

0

>

r

L

x

f

x

f

, then the root lies between
[image: image42.wmf]r

x

 and
[image: image43.wmf]U

x

; then
[image: image44.wmf]r

L

x

x

=

 and
[image: image45.wmf]U

U

x

x

=

.
If
[image: image46.wmf](

)

(

)

0

=

r

L

x

f

x

f

, then the root is
[image: image47.wmf]r

x

. Stop the algorithm.
4. Find the new estimate of the root

[image: image48.wmf](

)

(

)

(

)

(

)

U

L

U

L

L

U

r

x

f

x

f

x

f

x

x

f

x

x

-

-

=

Find the absolute relative approximate error as

[image: image49.wmf]100

´

-

=

Î

new

r

old

r

new

r

a

x

x

x

where

[image: image50.wmf]new

r

x

= estimated root from present iteration

[image: image51.wmf]old

r

x

= estimated root from previous iteration

5. Compare the absolute relative approximate error
[image: image52.wmf]a

Î

with the pre-specified relative error tolerance
[image: image53.wmf]s

Î

. If
[image: image54.wmf]s

a

>Î

Î

, then go to step 3, else stop the algorithm. Note one should also check whether the number of iterations is more than the maximum number of iterations allowed. If so, one needs to terminate the algorithm and notify the user about it.
Note that the false-position and bisection algorithms are quite similar. The only difference is the formula used to calculate the new estimate of the root
[image: image55.wmf]r

x

 as shown in steps #2 and #4!

Example 1

You are working for “DOWN THE TOILET COMPANY” that makes floats for ABC commodes. The floating ball has a specific gravity of 0.6 and has a radius of 5.5cm. You are asked to find the depth to which the ball is submerged when floating in water. The equation that gives the depth
[image: image56.wmf]x

 to which the ball is submerged under water is given by

[image: image57.wmf]0

10

993

.

3

165

.

0

4

2

3

=

´

+

-

-

x

x

Use the false-position method of finding roots of equations to find the depth
[image: image58.wmf]x

 to which the ball is submerged under water. Conduct three iterations to estimate the root of the above equation. Find the absolute relative approximate error at the end of each iteration, and the number of significant digits at least correct at the end of third iteration.
	[image: image59.png]x|

Water

	Figure 2 Floating ball problem.

	

	

Solution

From the physics of the problem, the ball would be submerged between
[image: image60.wmf]0

=

x

 and
[image: image61.wmf]R

x

2

=

,

where

[image: image62.wmf]ball,

 the

of

radius

=

R

that is

[image: image63.wmf]R

x

2

0

£

£

[image: image64.wmf])

055

.

0

(

2

0

£

£

x

[image: image65.wmf]11

.

0

0

£

£

x

Let us assume

[image: image66.wmf]11

.

0

,

0

=

=

U

L

x

x

Check if the function changes sign between
[image: image67.wmf]L

x

 and
[image: image68.wmf]U

x

[image: image69.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

4

4

2

3

4

4

2

3

10

662

.

2

10

993

.

3

11

.

0

165

.

0

11

.

0

11

.

0

10

993

.

3

10

993

.

3

0

165

.

0

0

0

-

-

-

-

´

-

=

´

+

-

=

=

´

=

´

+

-

=

=

f

x

f

f

x

f

U

L

Hence

[image: image70.wmf](

)

(

)

(

)

(

)

(

)

(

)

0

10

662

.

2

10

993

.

3

11

.

0

0

4

4

<

´

-

´

=

=

-

-

f

f

x

f

x

f

U

L

Therefore, there is at least one root between
[image: image71.wmf]L

x

 and
[image: image72.wmf]U

x

, that is between 0 and 0.11.

Iteration 1

The estimate of the root is

[image: image73.wmf](

)

(

)

(

)

(

)

(

)

(

)

0660

.

0

10

662

.

2

10

993

.

3

10

662

.

2

0

10

993

.

3

11

.

0

4

4

4

4

=

´

-

-

´

´

-

´

-

´

´

=

-

-

=

-

-

-

-

U

L

U

L

L

U

r

x

f

x

f

x

f

x

x

f

x

x

[image: image74.wmf](

)

(

)

(

)

(

)

(

)

5

4

2

3

10

1944

.

3

10

993

.

3

0660

.

0

165

.

0

0660

.

0

0660

.

0

-

-

´

-

=

´

+

-

=

=

f

x

f

r

[image: image75.wmf](

)

(

)

(

)

(

)

(

)

(

)

0

0660

.

0

0

<

-

+

=

=

f

f

x

f

x

f

r

L

Hence, the root is bracketed between
[image: image76.wmf]L

x

 and
[image: image77.wmf]r

x

, that is, between 0 and 0.0660. So, the lower and upper limits of the new bracket are
[image: image78.wmf]0660

.

0

,

0

=

=

U

L

x

x

, respectively.
Iteration 2

The estimate of the root is

[image: image79.wmf](

)

(

)

(

)

(

)

(

)

(

)

0611

.

0

10

1944

.

3

10

993

.

3

10

1944

.

3

0

10

993

.

3

0660

.

0

5

4

5

4

=

´

-

-

´

´

-

´

-

´

´

=

-

-

=

-

-

-

-

U

L

U

L

L

U

r

x

f

x

f

x

f

x

x

f

x

x

The absolute relative approximate error for this iteration is

[image: image80.wmf]%

8

100

0611

.

0

0660

.

0

0611

.

0

@

´

-

=

Î

a

[image: image81.wmf](

)

(

)

(

)

(

)

(

)

5

4

2

3

10

1320

.

1

10

993

.

3

0611

.

0

165

.

0

0611

.

0

0611

.

0

-

-

´

=

´

+

-

=

=

f

x

f

r

[image: image82.wmf](

)

(

)

(

)

(

)

(

)

(

)

0

0611

.

0

0

>

+

+

=

=

f

f

x

f

x

f

r

L

Hence, the lower and upper limits of the new bracket are
[image: image83.wmf]0660

.

0

,

0611

.

0

=

=

U

L

x

x

, respectively.
Iteration 3

The estimate of the root is

[image: image84.wmf](

)

(

)

(

)

(

)

(

)

(

)

0624

.

0

10

1944

.

3

10

132

.

1

10

1944

.

3

0611

.

0

10

132

.

1

0660

.

0

5

5

5

5

=

´

-

-

´

´

-

´

-

´

´

=

-

-

=

-

-

-

-

U

L

U

L

L

U

r

x

f

x

f

x

f

x

x

f

x

x

The absolute relative approximate error for this iteration is

[image: image85.wmf]%

05

.

2

100

0624

.

0

0611

.

0

0624

.

0

@

´

-

=

Î

a

[image: image86.wmf](

)

7

10

1313

.

1

-

´

-

=

r

x

f

[image: image87.wmf](

)

(

)

(

)

(

)

(

)

(

)

0

0624

.

0

0611

.

0

<

-

+

=

=

f

f

x

f

x

f

r

L

Hence, the lower and upper limits of the new bracket are
[image: image88.wmf]0624

.

0

,

0611

.

0

=

=

U

L

x

x

All iterations results are summarized in Table 1. To find how many significant digits are at least correct in the last iterative value

[image: image89.wmf]m

m

a

-

-

´

£

´

£

Î

2

2

10

5

.

0

05

.

2

10

5

.

0

[image: image90.wmf]387

.

1

£

m

The number of significant digits at least correct in the estimated root of 0.0624 at the end of 3rd iteration is 1.
Table 1 Root of
[image: image91.wmf](

)

0

10

993

.

3

165

.

0

4

2

3

=

´

+

-

=

-

x

x

x

f

for false-position method.

	Iteration
	
[image: image92.wmf]L

x

	
[image: image93.wmf]U

x

	
[image: image94.wmf]r

x

	
[image: image95.wmf]%

a

Î

	
[image: image96.wmf](

)

m

x

f

	1
	0.0000
	0.1100
	0.0660

[image: image97.wmf]5

10

1944

.

3

-

´

-

	2
	0.0000
	0.0660
	0.0611
	8.00
	
[image: image98.wmf]5

10

1320

.

1

-

´

-

	3
	0.0611
	0.0660
	0.0624
	2.05
	
[image: image99.wmf]7

10

1313

.

1

-

´

-

Example 2

Find the root of
[image: image100.wmf](

)

(

)

(

)

0

2

4

2

=

+

-

=

x

x

x

f

, using the initial guesses of
[image: image101.wmf]5

.

2

-

=

L

x

 and
[image: image102.wmf],

0

.

1

-

=

U

x

and a pre-specified tolerance of
[image: image103.wmf]%

1

.

0

=

Î

s

.

Solution

The individual iterations are not shown for this example, but the results are summarized in Table 2. It takes five iterations to meet the pre-specified tolerance.
Table 2 Root of
[image: image104.wmf](

)

(

)

(

)

0

2

4

2

=

+

-

=

x

x

x

f

for false-position method.

	Iteration
	
[image: image105.wmf]L

x

	
[image: image106.wmf]U

x

	
[image: image107.wmf](

)

L

x

f

	
[image: image108.wmf](

)

U

x

f

	
[image: image109.wmf]r

x

	
[image: image110.wmf]%

a

Î

	
[image: image111.wmf](

)

m

x

f

	1
	-2.5
	-1
	-21.13
	25.00
	-1.813
	N/A
	6.319

	2
	-2.5
	-1.813
	-21.13
	6.319
	-1.971
	8.024
	1.028

	3
	-2.5
	-1.971
	-21.13
	1.028
	-1.996
	1.229
	0.1542

	4
	-2.5
	-1.996
	-21.13
	0.1542
	-1.999
	0.1828
	0.02286

	5
	-2.5
	-1.999
	-21.13
	0.02286
	-2.000
	0.02706
	0.003383

To find how many significant digits are at least correct in the last iterative answer,

[image: image112.wmf]m

m

a

-

-

´

£

´

£

Î

2

2

10

5

.

0

02706

.

0

10

5

.

0

[image: image113.wmf]2666

.

3

£

m

Hence, at least 3 significant digits can be trusted to be accurate at the end of the fifth iteration.
	FALSE-POSITION METHOD OF SOLVING A NONLINEAR EQUATION

	Topic
	False-Position Method of Solving a Nonlinear Equation

	Summary
	Textbook Chapter of False-Position Method

	Major
	General Engineering

	Authors
	Duc Nguyen

	Date
	September 4, 2012

03.06.1

_1340543071.unknown

_1340544453.unknown

_1408269683.unknown

_1408269750.unknown

_1408269815.unknown

_1408269898.unknown

_1408269952.unknown

_1408270249.unknown

_1408270251.unknown

_1408270253.unknown

_1408269965.unknown

_1408269977.unknown

_1408269958.unknown

_1408269921.unknown

_1408269944.unknown

_1408269912.unknown

_1408269883.unknown

_1408269891.unknown

_1408269829.unknown

_1408269784.unknown

_1408269794.unknown

_1408269801.unknown

_1408269789.unknown

_1408269765.unknown

_1408269770.unknown

_1408269756.unknown

_1408269715.unknown

_1408269729.unknown

_1408269734.unknown

_1408269743.unknown

_1408269721.unknown

_1408269699.unknown

_1408269705.unknown

_1408269693.unknown

_1341119446.unknown

_1341377532.unknown

_1408269634.unknown

_1408269663.unknown

_1408269674.unknown

_1408269642.unknown

_1407994393.unknown

_1407994430.unknown

_1341377684.unknown

_1341377806.unknown

_1341377693.unknown

_1341377543.unknown

_1341376802.unknown

_1341377274.unknown

_1341377285.unknown

_1341377070.unknown

_1341377071.unknown

_1341376970.unknown

_1341375807.unknown

_1341376782.unknown

_1341375128.unknown

_1341375238.unknown

_1341119465.unknown

_1340544455.unknown

_1340544458.unknown

_1340544459.unknown

_1340544456.unknown

_1340544454.unknown

_1340543649.unknown

_1340543864.unknown

_1340543940.unknown

_1340544346.unknown

_1340543866.unknown

_1340543714.unknown

_1340543717.unknown

_1340543655.unknown

_1340543583.unknown

_1340543603.unknown

_1340543607.unknown

_1340543586.unknown

_1340543483.unknown

_1340543568.unknown

_1340543576.unknown

_1340543477.unknown

_1340542994.unknown

_1340543022.unknown

_1340543043.unknown

_1340543048.unknown

_1340543031.unknown

_1340543013.unknown

_1340543017.unknown

_1340542997.unknown

_1340543004.unknown

_1340542544.unknown

_1340542981.unknown

_1340542991.unknown

_1340542637.unknown

_1340542171.unknown

_1340542495.unknown

_1328341307.unknown

_1328341758.unknown

_1328380998.unknown

_1328381038.unknown

_1328425758.vsd
Exact root

_1328381014.unknown

_1328378973.unknown

_1328341340.unknown

_1282986728.unknown

_1282986919.unknown

_1308348672.unknown

_1282986907.unknown

_1282986906.unknown

_1282986725.unknown

