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Multidimensional Gradient Methods -
Overview 

 Use information from the derivatives of the 
optimization function to guide the search  

 Finds solutions quicker compared with direct 
search methods 

 A good initial estimate of the solution is 
required 

 The objective function needs to be 
differentiable 
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Gradients 

 The gradient is a vector operator denoted by 
∇ (referred to as “del”)  

 When applied to a function , it represents the 
functions directional derivatives  

 The gradient is the special case where the 
direction of the gradient is the direction of 
most or the steepest ascent/descent 

 The gradient is calculated by 
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Gradients-Example 
Calculate the gradient to determine the direction of the
 

steepest slope at point (2, 1) for the function             
 
 Solution: To calculate the gradient we would need to 

calculate 
 
 
which are used to determine the gradient at point (2,1) 

as 
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Hessians 

 The Hessian matrix or just the Hessian is the 
Jacobian matrix of second-order partial 
derivatives of a function.  

 The determinant of the Hessian matrix is also 
referred to as the Hessian.  

 For a two dimensional function the Hessian 
matrix is simply 

 
 

8 



















∂
∂

∂∂
∂

∂∂
∂

∂
∂

=

2

22

2

2

2

y
f

xy
f

yx
f

x
f

H

http://nm.mathforcollege.com 



Hessians cont. 

The determinant of the Hessian matrix denoted 
by     

 
can have three cases: 

1. If       
 

and              
 

then        
 

has a local 
minimum. 

2. If        
 

and               
 

then        
 

has a local 
maximum. 

3. If         then       
 

has a saddle point. 
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Hessians-Example 
Calculate the hessian matrix at point (2, 1) for the 

function             
 Solution: To calculate the Hessian matrix; the partial 

derivatives must be evaluated as 
 
 
resulting in the Hessian matrix 
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Steepest Ascent/Descent Method 

 Step
  

Starts from an initial guessed point
 

 
 
 

     and looks for a local optimal solution 
along a gradient. 

 Step2
 

The gradient at the initial solution is 
calculated(or finding the direction to 
travel),compute

 
                              .                                  
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 Step3
 

Find the step size “h” along the  
   Calculated (gradient) direction (using Golden 

Section Method or Analytical Method). 
 Step4:A new solution is found at the local 

optimum along the gradient ,compute  
 


 
Step5: If “converge”,such as                  

 

then stop.
 

Else, return to step 2
 

(using the newly 
computed point

 
 ). 
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THE END  
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Example 

Determine the minimum of the function   
 
 
 
Use the poin                 (2, 1) as the initial estimate of the 

optimal solution. 
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Solution 
Iteration 1: To calculate the gradient; the partial derivatives 
must be evaluated as 
Recalled that  
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Solution 
Now the function          can be expressed along the 
direction of gradient as 
 
 
 
 
To get         ,we set 
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Solution Cont. 
Iteration 1 continued:  
This is a simple function and it is easy to determine               
by taking the first derivative and solving for its roots.  
 
This means that traveling a step size of              along the 
gradient reaches a minimum value for the function in this 
direction. These values are substituted back to calculate a 
new value for x and y as follows: 
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Solution Cont. 
Iteration 2: The new initial point is               .We calculate 
the gradient at this point as 
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Solution Cont. 

This indicates that the current location is a local optimum 
along this gradient and no improvement can be gained by 
moving in any direction. The minimum of the function is 
at point (-1,0),and                                         . 34)1(2)0()1( 22
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THE END  
 
 
 
 

http://nm.mathforcollege.com 



This instructional power point brought to you by 
Numerical Methods for STEM undergraduate 
http://nm.mathforcollege.com 
Committed to bringing numerical methods to the 
undergraduate 

Acknowledgement 

http://numericalmethods.eng.usf.edu/


For instructional videos on other topics, go to 
 

http://nm.mathforcollege.com 
 
This material is based upon work supported by the National 
Science Foundation under Grant # 0717624. Any opinions, 
findings, and conclusions or recommendations expressed in 
this material are those of the author(s) and do not necessarily 
reflect the views of the National Science Foundation. 

http://numericalmethods.eng.usf.edu/videos/


The End - Really 


	�Numerical Methods� �Multidimensional Gradient Methods in Optimization- Theory��http://nm.mathforcollege.com
	Slide Number 2
	You are free
	Under the following conditions
	Multidimensional Gradient Methods -Overview
	Gradients
	Gradients-Example
	Hessians
	Hessians cont.
	Hessians-Example
	Steepest Ascent/Descent Method
	Steepest Ascent/Descent Method
	The End
	Acknowledgement
	Slide Number 15
	The End - Really
	�Numerical Methods� �Multidimensional Gradient Methods in Optimization- Example��http://nm.mathforcollege.com
	Slide Number 18
	You are free
	Under the following conditions
	Example
	Solution
	Solution
	Solution Cont.
	Solution Cont.
	Solution Cont.
	The End
	Acknowledgement
	Slide Number 29
	The End - Really

