Parabolic Partial
Differential Equations
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Defining Parabolic PDE’s

* The general form for a second order linear PDE with two independent
variables and one dependent variable is

2 2 2
A&_L21+ Ba—u+Ca—LZI+D:O
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* Recall the criteria for an equation of this type to be considered parabolic
B*—4AC =0

* For example, examine the heat-conduction equation given by

2
Ola-lz-:a-r ,where A=a,B=0,C=0,D=-1
OX ot
Then
B2 —4AC = 0—4(a)(0)
=0

thus allowing us to classify this equation as parabolic.



Physical Example of an Elliptic
PDE

The internal temperature of a metal rod exposed to two different
temperatures at each end can be found using the heat conduction

equation. 5
o°T _at
ox° ot

04



Discretizing the Parabolic PDE

- » X

1-1 i 1+1

Schematic diagram showing interior nodes

e 1. L
For a rod of length L divided into N+1 nodes AX=—
n

The time is similarly broken into time steps of At

Hence Tij corresponds to the temperature at node | ,that is,

K= (I)(AX) anaeime t = (j)(A1)



The Explicit Method

=i i I+1
If we define AX =% we can then write the finite central divided difference

approximation of the left hand side at a general interior node ( j) as

o°T| _T.-2T)+T/,

2 = 2
ox* |, (Ax)
where (j ) is the node number along the time.




The Explicit Method

1-1 i 1+1

The time derivative on the right hand side is approximated by the
forward divided difference method as,

al T"-T
otl,; At




The Explicit Method

Substituting these approximations into the governing equation yields

Tttty o
(Ax)° At

Solving for the temp at the time node j +1 gives

a

TH=T)rg- 2 (11 2T +TJ)
choosing, (AX)

il

0

we can write the equation as,

T =TJ 4 AT,

1+1

_2TI 4T,



The Explicit Method
T =T 4 A(T), - 2T + T

1+1

*This equation can be solved explicitly because it can be written for each
internal location node of the rod for time nodej+1 in terms of the
temperature at time node j.

*In other words, if we know the temperature at nodej =0, and the
boundary temperatures, we can find the temperature at the next time
step.

*We continue the process by first finding the temperature at all nodesj =1,
and using these to find the temperature at the next time node,j =2 .This
process continues until we reach the time at which we are interested in
finding the temperature.



Example |: Explicit Method

Consider a steel rod that is subjected to a temperature of 100°C on the left
end and25°C on the right end. If the rod is of length0.05m ,use the explicit
method to find the temperature distribution in the rod fromt=0 and t =9
seconds. Use Ax = 0.01m, At = 3s.

J
kg — K

W
m-— K

Given:k =54

,p:7goo%, C = 490

The initial temperature of the rod is 20°C .

=0 1 2 3 4 5

T=100°C | . ] ] ] « T=25°C




Example |: Explicit Method

Recall,
Kk

a=—

oC

therefore,

o4
o =
7800x 490

=1.4129%x10™° m? /s,

Then,
At
T
—1.4129x10° —>
(0.01)°
= 0.4239.

Number of time steps,
Ui — 1
At
~9-0
3
=3.

initial

Boundary Conditions
T,) =100°C

_ forall j =0,1,2,3
T, =25°C

All internal nodes are at 20°C
for t =0sec. This can be
represented as,

T =20°C, foralli=1,2,3,4



Example |: Explicit Method

Nodal temperatures when t =0sec, j =0:

T2 =100°C
T =20°C
T =20°C
T2 =20°C
T2 =20°C
TL = 25°C

L Interior nodes

We can now calculate the temperature at each node explicitly using
the equation formulated earlier,

T =T+ A(T), - 2T + T )

1+1



Example |: Explicit Method

Nodal temperatures when t = 3sec (Example Calculations)
=0 T, =100°C - Boundary Condition

setting | =0
E— -|-11 - T10 " Z(TZO E 2-|-10 +T00) |iz T21 il Tzo " l(TSO . 2-|-20 _|_-|-10)
= 20 +0.4239(20 — 2(20) +100) = 20+ 0.4239(20 — 2(20) + 20)
= 20 +0.4239(80) = 20+0.4239(0)
= 20+33.912 =20+0
=53.912°C = 20°C

Nodal temperatures whent=3sec , | =1:

T, =100°C —Boundary Condition
T} =53.912°C|
T, =20°C
T} =20°C
T} =22.120°C
T, = 25°C —Boundary Condition

s Interior nodes




Example |: Explicit Method

Nodal temperatures when t =6sec (Example Calculations)
=0 T, =100°C-Boundary Condition
setting =1,

= R e | =2 T2 =Tr+A(Td-21} +T})

— = 53.912+0.4239(20 - 2(53.912) +100) =20+ 0.4239(20 — 2(20) + 53.912)
=53.912 + 0.4239(12.176) =20 + 0.4239(33.912)
- 53.912 +5.1614 —20+14.375
- 59.073°C = 34.375°C

Nodal temperatures whent =6sec , | = 2:

T/ =100°C —Boundary Condition
T,2 =59.073°C|
T22 =34.375°C
T32 =20.889°C
T2 = 22.442°C
T2 = 25°C —Boundary Condition

s Interior nodes




Example |: Explicit Method

Nodal temperatures when t =9sec (Example Calculations)
=0 T2 =100°C - Boundary Condition
setting | =2 ,

=1 i=2

TP =T2 +A[T2 - 217 +T7) T2 =T2+ T2 -2T2 +T7)
=59.073+0.4239(34.375 - 2(59.073) +100) = 34.375+0.4239(20.899 — 2(34.375) + 59.073)
=59.073+0.4239(16.229) =34.375+0.4239(11.222)
=59.073+6.8795 = 34.375+ 4.7570
=65.953°C =39.132°C

Nodal temperatures when = 9sec, ] =3 ¢

T.) =100°C — Boundary Condition
T =65.953°C
T} =39.132°C
T2 = 27.266°C
T43 =22.872°C
T. = 25°C —Boundary Condition

Interior nodes




Example |: Explicit Method

To better visualize the temperature variation at different
locations at different times, the temperature distribution along
the length of the rod at different times is plotted below.
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Temperature distribution along the length of the rod
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Location on rod, x(m)




The Implicit Method

WHY:

*Using the explicit method, we were able to find the temperature at
each node, one equation at a time.

*However, the temperature at a specific node was only dependent
on the temperature of the neighboring nodes from the previous
time step. This is contrary to what we expect from the physical
problem.

*The implicit method allows us to solve this and other problems by
developing a system of simultaneous linear equations for the
temperature at all interior nodes at a particular time.



The Implicit Method

O°T oT
o4 — —
OX © ot

The second derivative on the left hand side of the equation is
approximated by the CDD scheme at time level j+1 at node (])
as

o°T T —2T 4T

o I+l

ox2| (AX)°

1, j+1




The Implicit Method

O°T oT
(04 —
OX ° ot

The first derivative on the right hand side of the equation is
approximated by the BDD scheme at time level j +1 at node (])

o) 1T
ot At

1, J+1



The Implicit Method

O°T oT
o4 — —
OX © ot

Substituting these approximations into the heat conduction
equation yields

T-j+1 " 2Tij+1 _I_Tliil-—l Tij+1 _Tj

1+1 [

. (Ax)’ T At



The Implicit Method

From the previous slide,
j+1 j+1 j+1 j+1 J
Ti+1 - 2Ti + Ti il g Ti _Ti
(Ax)° At

(04

Rearranging yields

AT Q2T AT =T

i1+1

given that,

At
Al=g——
“(axy

The rearranged equation can be written for every node during each time
step. These equations can then be solved as a simultaneous system of
linear equations to find the nodal temperatures at a particular time.



Example 2: Implicit Method

Consider a steel rod that is subjected to a temperature of 100°C on the left
end and25°C on the right end. If the rod is of length0.05m ,use the implicit
method to find the temperature distribution in the rod fromt=0 and t =9
seconds. Use Ax = 0.01m, At = 3s.

J
kg — K

W
m-— K

Given:k =54

,p:7goo%, C = 490

The initial temperature of the rod is 20°C .

=0 1 2 3 4 5

T=100°C | . ] ] ] « T=25°C




Example 2: Implicit Method

Recall,
Kk

a=—

oC

therefore,

o4
o =
7800x 490

=1.4129%x10™° m? /s,

Then,
At
T
—1.4129x10° —>
(0.01)°
= 0.4239.

Number of time steps,
Ui — 1
At
~9-0
3
=3.

initial

Boundary Conditions
T,) =100°C

_ forall j =0,1,2,3
T, =25°C

All internal nodes are at 20°C
for t =0sec. This can be
represented as,

T =20°C, foralli=1,2,3,4



Example 2: Implicit Method

Nodal temperatures when t =0sec, j =0:

T2 =100°C
T =20°C
T =20°C
T2 =20°C
T2 =20°C
TL = 25°C

L Interior nodes

We can now form our system of equations for the first time step by
writing the approximated heat conduction equation for each node.

AT+ @+ 20) T - AT =T

1+1



Example 2: Implicit Method

Nodal temperatures when t =3sec, (Example Calculations)
=0 T, =100°C - Boundary Condition

For the interior nodes setting j=0 and i=12,34 gives the following,

1=1 ATl @+20)T AT =T
(—0.4239x100) + (1+ 2% 0.4239)T.! — (0.4239T,}) = 20
—42.39+1.8478T —0.4239T, = 20
1.8478T,' —0.4239T, =62.390

Il
N

AT+ Q4 2)TL = AT =T
—0.4239T, +1.8478T} — 0.4239T.} = 20

For the first time step we can write four such equations with four
unknowns, expressing them in matrix form yields

- 1.8478 —0.4239 0 0 T!| [62.390]
04239 18478 -04239 0 |T:| | 20

0  -0.4239 18478 -04239|T| | 20
0 0 -04239 18478 |T:| |30598]



Example 2: Implicit Method

- 1.8478
—0.4239
0
0

—0.4239
1.8478
—0.4239
0

0
—0.4239
1.8478
—0.4239

0
0
—0.4239

1.8478

62.390
20
20

30.598

The above coefficient matrix is tri-diagonal. Special algorithms
such as Thomas’ algorithm can be used to solve simultaneous
linear equation with tri-diagonal coefficient matrices.The
solution is given by

(T1] [39.451] To 100

T :

-|-11 24792 | Hence, the nodal T, 39.451
= temps at t = 3SeC are Tl 24.792

Ti| |21.438 2 || 24

T | 21477 T, | |21.438

- TX| |21.477

T, | | 25 |




Example 2: Implicit Method

Nodal temperatures when t =6sec, (Example Calculations)
=0 TS =100°C - Boundary Condition

For the interior nodes setting j=1 andi =123 4 gives the following,

1=1 724 @+2)T2-AT2 =T
(~0.4239x100) + (1+ 2% 0.4239)T,> — 0.4239T 2 = 39.451
— 42.39+1.8478T,% —0.4239T, = 39.451
1.8478T,2 —0.4239T = 81.841

=2 T2 @4 20T ATZ =T}
_0.4239T/? +1.8478T? —0.4239T 2 = 24.792

For the second time step we can write four such equations with four
unknowns, expressing them in matrix form yields

[ 1.8478 -04239 0 0 T2 [81.841
04239 1.8478 -04239 0 [TZ| |24.792

0  —04239 18478 —0.4239|T2| |21.438
0 0  -04239 18478 |T2| |32.075




Example 2: Implicit Method

[ 1.8478
—0.4239
0
0

—0.4239
1.8478
—0.4239
0

0
—0.4239
1.8478
—0.4239

0
0
—0.4239

1.8478

T/

81.841 |
24.792
21.438

32075

The above coefficient matrix is tri-diagonal. Special algorithms
such as Thomas’ algorithm can be used to solve simultaneous
linear equation with tri-diagonal coefficient matrices.The
solution is given by

T2] [51.326] Ty 100
12 30.669 Hence, the nodal le 51.326
Ly = temps at{ = 6Sec are T2 30.669
T, 23.876 o By
T2 | |22.836 T2 | |23.876
| 14 | L44:999]
T42 22.836
_T52 1L 25 |




Example 2: Implicit Method

Nodal temperatures when t =9sec, (Example Calculations)
=0 T, =100°C - Boundary Condition

For the interior nodes setting j=2andi =1, 2,3,4 gives the following,

1=1 T3 @+2)T2 - AT =T2
(~0.4239x100) + (L+ 2 x 0.4239)T,* — (0.4239T?) = 51.326
—42.39+1.8478T; —0.4239T; = 51.326
1.8478T,2 — 0.4239T; = 93.716
| =2 124 @+20)T2 AT =72
—0.4239T° +1.8478T, —0.4239T,> = 30.669

For the third time step we can write four such equations with four
unknowns, expressing them in matrix form yields

[ 1.8478 —0.4239 0 0 12| [93.716]
~04239 18478 -04239 0 |T?| |30.669

0  -04239 18478 -04239|T2| |23.876
0 0  —04239 18478 |T?| [33.434



Example 2: Implicit Method

[ 1.8478
—0.4239
0
0

—0.4239
1.8478
—0.4239
0

0
—0.4239
1.8478
—0.4239

0
0
—0.4239

1.8478 |

T}

(93.716 |
30.669
23.876

33.434

The above coefficient matrix is tri-diagonal. Special algorithms
such as Thomas’ algorithm can be used to solve simultaneous
linear equation with tri-diagonal coefficient matrices.The
solution is given by

= ) T, 100
T 59.043 Hence, the nodal T’ 59.043
T} 36.292 | temps att=9seC are

2 | _ P T2 | |36.292
[ 2550 T2 || 26.809
_T43_ _24243_ T43 24243
_T53_ | 25 |




Example 2: Implicit Method

To better visualize the temperature variation at different
locations at different times, the temperature distribution along
the length of the rod at different times is plotted below.

120 _ : -
Temperature distribution along the length of the rod

100 4+ M
g 80 -
I~
:Jé 60 - =li—t=3 secs
=
g a0 - 1= 6 secs
E = t=9 secs

20 -
D | | 1
0 0.01 0.02 0.03 0.04 0.05
Location on rod, x(1m)




The Crank-Nicolson Method

WHY:

2

ey O(Ax)?

Using the implicit method our approximation of 2 >

OX
. . . T
accuracy, while our approximation of % was of O(At)accuracy.



The Crank-Nicolson Method

One can achieve similar orders of accuracy by approximating the
second derivative, on the left hand side of the heat equation, at the
midpoint of the time step. Doing so yields

O°T| _a|Th-2T'+T) T 21" +T
ox*| 2 (Ax) (AX )’

)




The Crank-Nicolson Method

The first derivative, on the right hand side of the heat equation, is
approximated using the forward divided difference method at time
level j+1,

or| T -T,

ot |. . At

1, ]




The Crank-Nicolson Method

*Substituting these approximations into the governing equation for
heat conductance yields
(4 Bzl + T N T _ .
2 At

&F ()

giving

— AT+ 2@+ )T = AT = 2T + 2(1- )T + AT

1+1 1+1

where

Y

*Having rewritten the equation in this form allows us to descritize
the physical problem.We then solve a system of simultaneous linear
equations to find the temperature at every node at any point in
time.



Example 3: Crank-Nicolson

Consider a steel rod that is subjected to a temperature of 100°C on the left
end and25°C on the right end. If the rod is of length0.05m ,use the Crank-
Nicolson method to find the temperature distribution in the rod from t=0
to t =9 seconds.Use Ax =0.01m,At = 3s.

J
kg — K

W
m-— K

Given:k =54

,p:7goo%, C = 490

The initial temperature of the rod is 20°C .

=0 1 2 3 4 5

T=100°C | . ] ] ] « T=25°C




Example 3: Crank-Nicolson

Recall,
Kk

a=—

oC

therefore,

o4
o =
7800x 490

=1.4129%x10™° m? /s,

Then,
At
T
—1.4129x10° —>
(0.01)°
= 0.4239.

Number of time steps,
Ui — 1
At
~9-0
3
=3.

initial

Boundary Conditions
T,) =100°C

_ forall j =0,1,2,3
T, =25°C

All internal nodes are at 20°C
for t =0sec. This can be
represented as,

T =20°C, foralli=1,2,3,4



Example 3: Crank-Nicolson

Nodal temperatures when t =0sec, j =0:

T2 =100°C
T =20°C
T =20°C
T2 =20°C
T2 =20°C
TL = 25°C

L Interior nodes

We can now form our system of equations for the first time step by
writing the approximated heat conduction equation for each node.

— AT+ 2@+ )T = AT = AT + 2(L- )T, + AT

I 1+1



Example 3: Crank-Nicolson

Nodal temperatures when t =3sec, (Example Calculations)
=0 T, =100°C - Boundary Condition

For the interior nodes setting j=0 andi=1234 gives the following

1=1

— ATy +2(L+ )T} = AT, = ATy + 21— )T + AT,

(~0.4239x100) + 2(1+ 0.4239)T;* — 0.4239T} = (0.4239)100 + 2(1— 0.4239)20 + (0.4239)20
—42.39+ 2.8478T11 — O.4239T21 =42.39+23.044 +8.478

2.8478T —0.4239T, =116.30

For the first time step we can write four such equations with four
unknowns, expressing them in matrix form yields

(28478 04239 0 0 1] [116.30]
~0.4239 28478 04239 0 |T}| |40.000

0  -04239 28478 -0.4239|T!| |40.000
0 0 04239 28478 |T!| |52.718



Example 3: Crank-Nicolson

(28478 -0.4239 O o 1] [126.30°
~04239 28478 -04239 0 | T}| |40.000

0  -04239 28478 —0.4239|T}| |40.000
0 0 04239 28478 |T}| |52.718

The above coefficient matrix is tri-diagonal. Special algorithms
such as Thomas’ algorithm can be used to solve simultaneous
linear equation with tri-diagonal coefficient matrices.The
solution is given by

= il B Ty 100
T 44.372 Hence, the nodal T | |44.372
T21 = 23.746 | temps att =3SecC are T, 23.746
T2 |20.797 Ti| | 20.797
TH| [21.607 | T, | |21.607

T, 25



Example 3: Crank-Nicolson

Nodal temperatures when t =6sec, (Example Calculations)
=0 TS =100°C - Boundary Condition

Forlthe interior nodes setting j =1and i =1,2,3,4 gives the following,
| =
— AT + 2+ AT — AT/ = AT, +2A— A)T} + AT,
(~0.4239%100) + 2(1+ 0.4239)T — 0.4239T? =
(0.4239)100 + 2(1— 0.4239)44.372 + (0.4239)23.746

—42.39 + 2.8478T12 — 0.4239T22 =42.39+51.125+10.066
2.8478T,2 —0.4239T 7 =145.971

For the second time step we can write four such equations with four
unknowns, expressing them in matrix form yields

| 2.8478 —-0.4239 0 0 T2 | [145.971
~0.4239 28478 -04239 0 |T?| |54.985

0  —-0.4239 28478 -0.4239|T2| |43.187
0 0  -04239 28478 || T2| |54.908




Example 3: Crank-Nicolson

[ 2.8478 —0.4239 0 0 T2 | [145.971]
—0.4239 28478 -04239 0 |TZ| |54.985

0  -04239 28478 -0.4239|T2| | 43.187
0 0  -04239 28478 |T2| |54.908

The above coefficient matrix is tri-diagonal. Special algorithms
such as Thomas’ algorithm can be used to solve simultaneous
linear equation with tri-diagonal coefficient matrices.The
solution is given by

i (T2] [ 100 7
e L

Ty 55.883 Hence, the nodal TS 55.883

T, | 31.075| tempsatt=06secC are T, | |31.075

T2| |23.174 T2 | |23.174

TZ2| |22.730 TS| 22730

- ] 12| | 25 |




Example 3: Crank-Nicolson

Nodal temperatures when t =9sec, (Example Calculations)
=0 T, =100°C - Boundary Condition
For the interior nodes setting j =2 andi=1 2,34 gives the following,
1=1
AT 420+ TS —AT2 = ATZ +2(1- )T + AT,
(~0.4239x100) + 2(1+ 0.4239)T, — 0.4239T; =
(0.4239)100 + 2(1— 0.4239)55.883 + (0.4239)31.075

—42.39+2.8478T° —0.4239T, = 42.39+64.388+13.173

2.8478T° —0.4239T, =162.34

For the third time step we can write four such equations with four
unknowns, expressing them in matrix form yields

 2.8478  —0.4239 0 0 [T} [162.34]
~0.4239 28478 -04239 0 |T7| |69.318

0  -04239 28478 -0.4239|T7| |49.509
0 0  —04239 28478 |T?| |57.210]



Example 3: Crank-Nicolson

| 2.8478  —0.4239 0 0 T2 | [162.34
-0.4239 2.8478 -0.4239 0 ||T}| |69.318

0 ~04239 2.8478 —0.4239 | T2 | |49.509
0 0 -0.4239 2.8478 | T} | |57.210]

The above coefficient matrix is tri-diagonal. Special algorithms
such as Thomas’ algorithm can be used to solve simultaneous
linear equation with tri-diagonal coefficient matrices.The
solution is given by

= TN _ TS| | 100 |
T 62.604 Hence, the nodal T | |62.604
T23 _ 37.613| temps att=9sec are T3 37.613
TS| |26.562 T2 | | 26.562
T, | |24.042] T) | |24.042
) ] _T53_ L 25 .




Example 3: Crank-Nicolson

To better visualize the temperature variation at different
locations at different times, the temperature distribution along
the length of the rod at different times is plotted below.

120 - L .
Temperature distribution along the length of the rod

100 1 ™
EI-’ 30
~
9;"
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5
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200 -
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Internal Temperatures at 9 sec.

The table below allows you to compare the results from all three
methods discussed in juxtaposition with the analytical solution.

Crank

65.953 59.043  62.604 62510
T§’ 39.132 36.292  37.613 37.084
Ty 27.266 26.809  26.562 25.844
1l 22.872 24243 24042 23610



THE END
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