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Discrete Fourier Transform
Recalled the exponential form of Fourier series (see Eqs. 
26, 28 in Ch. 11.01), one gets:
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(26, repeated)

(28, repeated)

,,.......,3,2, 321 tnttttttt n 

then Eq. (26) becomes:
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If time “ ” is discretized at t
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Discrete Fourier Transform cont.

To simplify the notation, define:
ntn  (2)

Then, Eq. (2) can be written as:
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Multiplying both sides of Eq. (3) by nilwe 0 , and performing
the summation on “ ”, onen obtains (note: l = integer
number)
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Discrete Fourier Transform cont.

Switching the order of summations on the right-hand-side
of Eq.(5), one obtains:

 



























1

0

1

0

2)(1

0

2 ~)(
N

k

N

n

n
N

lki

k

N

n

n
N

il
eCenf



(6)

Define:
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There are 2 possibilities for        to be considered in 
Eq. (7)
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Discrete Fourier Transform—Case 1 

Case(1):        is a multiple integer of N, such 
as:               ; or             where 

)( lk 
mNlk  )( mNk  ,......2,1,0 m

Thus, Eq. (7) becomes:
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Hence:
(9)NA 
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Discrete Fourier Transform—Case 2

Case(2): is NOT a multiple integer of    .  In this 
case, from Eq. (7) one has:
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Define:
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;1a because         is “NOT” a multiple integer of )( lk  N
Then, Eq. (10) can be expressed as:
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Discrete Fourier Transform—Case 2

From mathematical handbooks, the right side of Eq. (12) 
represents the “geometric series”, and can be expressed as:

  ;
1

0
NaA

N

n

n  



if 1a (13)

;
1

1
a

a N




 if 1a (14)

Because of Eq. (11), hence Eq. (14) should be used
to compute    . Thus:A
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Discrete Fourier Transform—Case 2

Substituting Eq. (16) into Eq. (15), one gets 
0A (17)

Thus, combining the results of case 1 and case 2, we get
NNA  0 (18)

Substituting Eq.(18) into Eq.(7), and then referring 
to Eq.(6), one gets:
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Recall               (where are integer numbers), and 
since    must be in the range 

mNlk  ml,
k 10  N , m=0. Thus:

mNlk  lk becomes
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Discrete Fourier Transform—Case 2
Eq. (18A) can, therefore, be simplified to
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where ntn  and
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Aliasing Phenomenon, Nyquist samples, 
Nyquist rate

When a function ),(tf which may represent the signals
from some real-life phenomenon (shown in Figure 1), is 
sampled, it basically converts that function into a 
sequence )(~ kf at discrete locations of .t

Figure 1 Function to be sampled and “Aliased” sample problem.

http://numericalmethods.eng.usf.edu10



Aliasing Phenomenon, Nyquist samples, 
Nyquist rate cont.

)(~ kf ,)( 0 tkttattf represents the value of Thus, where 0t

is the location of the first sample ).0( kat

In Figure 1, the samples have been taken with a fairly 
large      Thus, these sequence of discrete data will not be 
able to recover the original signal function

.t
).(tf

For example, if all discrete values of        were 
connected by piecewise linear fashion, then a nearly 
horizontal straight line will occur between     through 
and    through     respectively (See Figure 1).

)(tf

1t 8t
12t9t
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Aliasing Phenomenon, Nyquist samples, 
Nyquist rate cont.

These piecewise linear interpolation (or other interpolation
schemes) will NOT produce a curve which closely resembles 
the original function       .  This is the case where the data 
has been “ALIASED”.

)(tf
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“Windowing” phenomenon
Another potential difficulty in sampling the function is 
called “windowing” problem. As indicated in Figure 2, 
while      is small enough so that a piecewise linear 
interpolation for connecting these discrete values will 
adequately resemble the original function      , however, 
only a portion of the function has been sampled 
(from    through    ) rather than the entire one. In other 
words, one has placed a “window” over the function.

t

)(tf

0t 17t
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“Windowing” phenomenon cont.

Figure 2. Function to be sampled and “windowing” sample problem.
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“Windowing” phenomenon cont.

Figure 3. Frequency of sampling rate          versus maximum frequency content )( Sw ).( maxw

In order to satisfy                         the frequency 
(  ) should be between points A and B of Figure 3.

max0)( wwforwF 

w
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“Windowing” phenomenon cont.
Hence:

maxmax wwww s 

which implies:
max2wws 

Physically, the above equation states that one must have 
at least 2 samples per cycle of the highest frequency 
component present (Nyquist samples, Nyquist rate).
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“Windowing” phenomenon cont.

Figure 4. Correctly reconstructed signal.
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“Windowing” phenomenon cont.

In Figure 4, a sinusoidal signal is sampled at the rate of 
6 samples per 1 cycle (or            ). Since this sampling 
rate does satisfy the sampling theorem requirement              
of               , the reconstructed signal does correctly 
represent the original signal.

06wws 

 max2wws 

http://numericalmethods.eng.usf.edu18



“Windowing” phenomenon cont.

Figure 5. Wrongly reconstructed signal.

In Figure 5 a sinusoidal signal is sampled at the rate 
of 6 samples per 4 cycles 






  04

6 wwor s

Since this sampling rate 
does NOT satisfy the 
requirement              , 
the reconstructed signal 
was wrongly represent 
the original signal!

 max2wws 

http://numericalmethods.eng.usf.edu19



Discrete Fourier Transform cont.
Equations (19) and (1) can be rewritten as
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To avoid computation with “complex numbers”, Equation 
(20) can be expressed as
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Discrete Fourier Transform cont.
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The above “complex number” equation is equivalent to 
the following 2 “real number” equations:
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