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i Discrete Fourier Transform

Recalled the exponential form of Fourier series (see Egs.
26, 28 in Ch. 11.01), one gets:
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If time “ 1 ” Is discretized at t, = At,t, = 2At,t; = 3At,......., t, = NAL,
then Eg. (26) becomes:
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i Discrete Fourier Transform cont.

To simplify the notation, define:

t =n 2)
Then, Eq (2) can be written as:
f(n) = ZC gt 3)

|Iw0n

Multlplylng both sides of Eq. (3) by e and performing
the summation on “n”, one obtains (note /= Integer
number)
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i Discrete Fourier Transform cont.

Switching the order of summations on the right-hand-side
of Eq.(5), one obtains:

il 2”jn N-1__ N-1 i(k_|)(2”jn
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Nif(n)xel(N YC e (6)
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Define:
A _ N lei(k—l)[zl\fjn (7)

There are 2 possibilities for (k—1) to be considered In
Eq. (7)
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i Discrete Fourier Transform—Case 1

Case(1): (k-1) is a multiple integer of N, such
as: (k=)=mN ; or k=+mN where m=0,+1+2,......

Thus, Eq. (7) becomes:

N-1 N-1
A=Y e™™ =% cos(mn2r) +isin(mn2z) (8)
n=0

n=0

Hence:
A=N (9)



i Discrete Fourier Transform—Case 2

Case(2): (k-1I)is NOT a multiple integer of N. In this
case, from Eg. (7) one has:

A sz{ei(kl)[@} (10)
Define:
i-)2F 27 . . 27
a=e _cos{(k—l)W)}Hsm{(k—I)W)} (11)

a = 1; because (k-1)is “NOT” a multiple integer of N
Then, Eq. (10) can be expressed as:

N-1
A=Y {af’ (12)
n=0



i Discrete Fourier Transform—Case 2

From mathematical handbooks, the right side of Eq. (12)
represents the “geometric series”, and can be expressed as:

A=Y fa"=N; if a=1 (13)
n=0
N
_1-d - 1f a=1 (14)
1-a

Because of Eq. (11), hence Eq. (14) should be used
to compute A. Thus:

aclza’ 1" ge0 Eq. (10)) (15)
1-a 1-a

e'® "% = cos{(k — )2z} +isin{(k —1)27}=1 (16)




i Discrete Fourier Transform—Case 2

Substituting Eg. (16) into Eg. (15), one gets

A=0 (17)
Thus, combining the results of case 1 and case 2, we get
A=N+0=N (18)

Substituting Eq.(18) into Eq.(7), and then referring
to Eq.(6), one gets:
% f (n)e ™o = fék x N (18A)

Recall k=1+mN (where I,m are integer numbers), and
since k must be in the range 0 > N -1, m=0. Thus:

k=1+mN becomes k=1



i Discrete Fourier Transform—Case 2

Eqg. (18A) can, therefore, be simplified to

Nz_l f (n)e ™" = él % N (18B)
Thus:
5 ( % )Nj —— (%szl f (n){cos(lw, ) — i sin(lw,n) (19)

where n=t and
N-1 - N-1 -
f(n)=>C,e"" =>"C,{cos(kw,n) +isin(kw,n)] (1, repeated)
k=0 k=0



Nyquist rate

i Aliasing Phenomenon, Nyquist samples,

When a function f(), which may represent the signals
from some real-life phenomenon (shown in Figure 1), is
sampled, it basically converts that function into a
sequence f (k) at discrete locations of t
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Figure 1 Function to be sampled and “Aliased” sample problem.
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Nyquist rate cont.

i Aliasing Phenomenon, Nyquist samples,

Thus, f(k) represents the value of f (t) at t =t, + kat, where t,
IS the location of the first sample (at k =0).

In Figure 1, the samples have been taken with a fairly
large At. Thus, these sequence of discrete data will not be
able to recover the original signal function f(t).

For example, if all discrete values of f(t) were
connected by piecewise linear fashion, then a nearly
horizontal straight line will occur between t, through t,
and t, through t, respectively (See Figure 1).
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Nyquist rate cont.

i Aliasing Phenomenon, Nyquist samples,

These piecewise linear interpolation (or other interpolation
schemes) will NOT produce a curve which closely resembles

the original function f(t). This is the case where the data
has been “ALIASED”.
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i “Windowing” phenomenon

Another potential difficulty in sampling the function is
called “windowing” problem. As indicated in Figure 2,
while At is small enough so that a piecewise linear
Interpolation for connecting these discrete values will
adequately resemble the original function f(t), however,
only a portion of the function has been sampled

(from t, through ) rather than the entire one. In other
words, one has placed a “window” over the function.
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“Windowing” phenomenon cont.

ASO

Figure 2. Function to be sampled and “windowing” sample problem.



“Windowing” phenomenon cont.
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Figure 3. Frequency of sampling rate (Ws) versus maximum frequency content (W,,,)-

In order to satisfy F(w)=0 forw>w,, the frequency
(W) should be between points A and B of Figure 3.
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i “Windowing” phenomenon cont.

Hence:
Wmax SWs Ws o Wmax

which implies:
WS 2 2Wmax

Physically, the above equation states that one must have

at least 2 samples per cycle of the highest frequency
component present (Nyquist samples, Nyquist rate).
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“Windowing” phenomenon cont.
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Figure 4. Correctly reconstructed signal.
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i “Windowing” phenomenon cont.

In Figure 4, a sinusoidal signal is sampled at the rate of
6 samples per 1 cycle (or w,=6w,). Since this sampling
rate does satisfy the sampling theorem requirement
of (w,>2w,, ), the reconstructed signal does correctly

represent the original signal.
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“Windowing” phenomenon cont.

In Figure 5 a sinusoidal signal is sampled at the rate
of 6 samples per 4 cycles [or wszgwoj
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Figure 5. Wrongly reconstructed signal.
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i Discrete Fourier Transform cont.

Equations (19) and (1) can be rewritten as

(20)

(k) = (%)Z cne‘k(w": o 21)

To avoid computation with “complex numbers”, Equation
(20) can be expressed as

N-1

CR+iC! = Z{f R(k)+i f! (k)}x {cos(8) —isin(6)} (20A)
where

0 = k(wo = %[jn



Discrete Fourier Transform cont.

N-1

CR+iC! = { R (k)xcos(8) + f' (k)sin(@) }+i{f ' (k)cos(d) - f " (k)sin(6)} (20B)

k=0

The above “complex number” equation is equivalent to
the following 2 “real number” equations:

énR = Nz_ll{f ®(k)cos(@) + f' (k)sin(@)} (20C)

C! =Y {f'(k)cos(d) - f " (k)sin(0)} (20D)

n
k=0
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