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Informal Development of Fast Fourier 
Transform

Recall the DFT pairs of Equations (20) and (21) 
of Chapter 11.04 and swapping the indexes   ,    
one obtains
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Informal Development cont.
Then Eq. (1) and Eq. (2)  become
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Assuming , then)2(24  rN
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Informal Development cont.

To obtain the above unknown vector      for a given 
vector    , the coefficient matrix can be easily converted 
as
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Hence, the unknown vector      can be computed as with 
matrix vector operations, as following
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Informal Development cont.
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Thus, in general (for )Nnk 
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Informal Development cont.



Informal Development cont.

Remarks:
a) Matrix times vector, shown in Eq. (7), will
require 16 (or ) complex multiplications and 12
(or ) complex additions.

b) Use of Eq. (8) will help to reduce the number 
of  operation counts, as explained in the next 
section.
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Chapter 11.05: Factorized Matrix and 
Further Operation Count (Contd.)

Equation (7) can be factorized as
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Factorized Matrix cont.
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Equations(11A through 11D) for the “inner” matrix 
times vector requires 2 complex multiplications and 4 
complex additions.

Factorized Matrix cont.



Factorized Matrix cont.
Finally, performing the “outer” product (matrix times 
vector) on the RHS of Equation(9), one obtains
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Factorized Matrix cont.

Again, Eqs (13A-13D) requires 2 complex multiplications
And 4 complex additions.  Thus, the complete RHS of Eq.
(9) Can be computed by only 4 complex multiplications 
(or              ) and 8 complex additions (or               ), 

where 
Since computational time is mainly controlled by the 
number of multiplications, implementing Eq. (9) will 
significantly reduce the number of multiplication 
operations, as compared to a direct matrix times vector 
operations. (as shown in Eq. (7)).

2
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Factorized Matrix cont.
For a large number of data points,
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This implies that the number of complex multiplications 
involved in Eq. (9) is about 372 times less than the one 
involved in Eq. (7).27 http://numericalmethods.eng.usf.edu



Graphical Flow of Eq. 9 

Consider the case 422 2  rN

Figure 1. Graphical
form of FFT (Eq. 9)
for the case
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Figure 2. Graphical Form of FFT (Eq. 9) for the case 
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Chapter 11.05 : Companion Node 
Observation (Contd.)

Careful observation of Figure 2 has revealed that 
each computed     vector (where                                
and                            ) we can always find two 
(companion) nodes which came from the same pair 
of nodes in the previous vector.  

thl rl ,...,2,1
1622 4  rN

For example,       and        are computed in terms of   
and       .
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and        .
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Figure 2. Graphical Form of FFT (Eq. 9) for the case 
1622 4  rN



Companion Node Observation cont.

Furthermore, the computation of companion nodes are 
independent of other nodes (within the –vector). 
Therefore, the computed        and        will override 
the original space of        and        .

)0(1f )8(1f
)0(f )8(f

thl

Similarly, the computed        and         will override the 
space occupied by       and         which in turn, will 
occupy the original space of       and        .  

)8(1f
)8(2f

)8(f

)12(2f
)12(1f

)12(f

Hence, only one complex vector (or 2 real vectors) of 
length     are needed for the entire FFT process.N
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Companion Node Spacing

Observing Figure 2, the following statements can be 
made:

a) in the first vector (      ), the companion 
nodes        and are separated by            

1l )0(1f
)8(1f







  12

16
2

8 l

Nork

b) in the second vector (       ), the companion 
nodes          and           are separated by        .

2l
)8(2f )12(2f 4k

.),
4

16
2
16

2
( 2 etcNor l 
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Companion Node Computation
The operation counts in any companion nodes 
(of the            vector), such as        and        
can be explained as (see Figure 2). 

ndthl 2 )8(2f )12(2f

4
112 )12()8()8( Efff 

12
112 )12()8()12( Efff 

48
11 )12()8( EEff 

4

8

)16(
2

11 )12()8( Eeff N
i














 

 

  4
11 )12()8( Eeff i

4
112 )12()8()12( Efff 

(15)

(16)
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Companion Node Computation cont.

Thus, the companion nodes        and        
computation will require 1 complex multiplication 
and 2 complex additions (see Eq. (15) and (16)).  
The weighting factors for the companion nodes (       
and         )  are     (or     ) and      (or           ), 
respectively.

)8(2f )12(2f

)8(2f
)12(2f 4E UE 12E 2NUE 

)
2

()()( 11 ll
U

ll
NkfEkfkf  

)
2

()()
2

( 11 ll
U

lll
NkfEkfNkf  

48

(17)

(18)
43 http://numericalmethods.eng.usf.edu



Skipping Computation of Certain Nodes

Because the pair of companion nodes     and          
are separated by the “distance”      , at the

level, after every      node computation, then 

the next     nodes will be skipped.  (see Figure 2)

L

Nk
2

k
L

N
2thL

L

N
2

L

N
2
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Chapter 11.05: Determination of  
The values of     ""U

Step 1: Express the index                             in 
binary form, using    bits.  For                          and      

01231 2)0(2)0(2)0(2)1(0,0,0,18  rk

)1,...,2,1,0(  Nk
r ,4,2,8  rLk

,1622 4  rN

53

Lecture # 14 

;
2

)()( 11 





   ll

U
ll

NkfEkfkf







 






   ll

U
lll

NkfEkfNkf
2

)(
2 11

can be determined by the following steps:

one obtains:

UE
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0,1,0,00,1,,0,0,0,1  XX

Step 2: Sliding this binary number                 
positions to the right, and fill in zeros, the 
results are   

224  Lr

It is important to realize that the results of Step 2
(0,0,1,0) are equivalent to expressing an integer

2
2
8

2 24 
Lr

kM in binary format.  In other words

)0,1,0,0(2 M

Determination of      cont.UE



Determination of      cont.

Step 3: Reverse the order of the bits, 
then (0,0,1,0) becomes (0,1,0,0) =   .  
Thus,

U

42)0(2)0(2)1(2)0( 0123 U

It is “NOT” really necessary to perform Step 
3, since the results of Step 2 can be used to 
compute “    “ as followingU

42)0(2)1(2)0(2)0( 3210 U
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Computer Implementation to find 

Based on the previous discussions (with the 3-
step procedures), to find the value of “   ”, one 
only needs a procedure to express an integer          

Lr

kM



2

r

U

Assuming     (a base 10 number) can be 
expressed as (assuming         bits)

M
4r

11234 JaaaaM  (19)
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in binary format, with    bits.

UE
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Divide      by 2,              then multiply the 
truncated result by 2  (                  ), and 
compute the difference between the original 
number and the new number.

212 JJ 
222  JJJ

M

Computer Implementation cont.



Computer Implementation cont.

Compute the difference between the original 
number and the new number :&&)( 21 JJJM 







 






 2

221
Truncated

MMJJJIDIFF (20)

If IDIFF = 0, then the bit a1 = 0
If IDIFF ≠ 0, then the bit a1 = 1
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Once the bit has been determined, the value of
is set to (or value of is reduced by a factor of 2;
since the previous .

A similar process can be used to determine the value
of process can be used to determine the next bit

1a 1J
2J

12341 aaaaMJ 

1J

)2()2()2()2( 0
1

1
2

2
3

3
41 aaaaMJ 

2a
etc.

Computer Implementation cont.



Example 1
For         ,                   ,         bits and        .  
Find the value of    .           

8k rN 216  4r 2L
U

124 2
2
8

2
JkM Lr 



Determine the bit (Index )1a 1I
Initialize 0U

1
2
2

2
1

2 
JJ

0)2)(1(2)2( 221  JJJJIDIFF

01 a
00202  IDIFFUU

Thus
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Example 1 cont.

Determine the bit (Index )2a 2I

0
2
1

2
1

2 
JJ

1)20(1)2( 221  JJJJIDIFF

12 a

11202  IDIFFUU

Thus 

121  JJ
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Determine the bit (Index )3a 3I

0
2
0

2
1

2 
JJ

0)2)(0(0)2( 221  JJJJIDIFF

03 a
20212  IDIFFUU

Thus

021  JJ

Example 1 cont.



Example 1 cont.

0
2
1

2
1

2 
JJ

0)2)(0(0)2( 221  JJJJIDIFF

04 a

40222  IDIFFUU

Thus

021  JJ

Determine the bit (Index )4a 4I
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Chapter 11.05: Unscrambling the FFT 
(Contd.)

)0000(4f

)0001(4f

)0010(4f

)0100(4f

)0101(4f

)0110(4f

)0111(4f

)1000(4f

)1001(4f

)1010(4f

)1011(4f

)1100(4f

)1101(4f

)1110(4f

)0000(
~
C

)0001(
~
C

)0010(
~
C

)0100(
~
C

)0101(
~
C

)0110(
~
C

)0111(
~
C

)1000(
~
C

)1001(
~
C

)1010(
~
C

)1011(
~
C

)1100(
~
C

)1101(
~
C

)1110(
~
C

)1111(
~
C

)0011(
~
C

0

1

2

4

5

6

7

8

9

10

11

12

13

14

15

3

= skip the operation

)(4 kf )(
~

nC

For the case                

, (see Figure 2), the 
final “bit-reversing” 
operation for FFT is 
shown in Figure 3.

4216  rN

Figure 3. Final “bit-reversing” for FFT (with )1622 4  rN
72 http://numericalmethods.eng.usf.edu

Lecture # 15 



For  do-loop index k = 0 = (0, 0, 0, 0)       i
= (0, 0, 0, 0) = bit-reversion = 0
If (i.GT.k) Then
T = f4(k) 
f4(k) = f4(i) 
f4(i) = T
Endif
Hence, f4(0) = f4(0) no swapping. 



55
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For  k = 1 = (0,0,0,1)       i = (1,0,0,0) 
= bit-reversion = 8
If (i.GT.k) Then
T = f4(k=1) 
f4(k=1) = f4(i=8) 
f4(i=8) = T
Endif
Hence, f4(1) = f4(8) are swapped. 


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. For k=4=(0,1,0,0) i=(0,0,1,0)=2

In this case, since “i” is not greater than “k”.
Hence, no swapping, since f4 (k = 2) and f4 (i =
4); had already been swapped earlier!
.etc.

.For k=3=(0,0,1,1)        i = (1,1,0,0) = 12
Hence, f4(3) = f4(12); are swapped.     





.For k=2=(0,0,1,0)        i = (0,1,0,0) = 4
Hence, f4(2) = f4(4); are swapped.     





Computer Implementation of FFT case for 
N=2r

The pair of companion nodes computation are given
by Eqs.(17) and (18). To avoid “complex number” 
operations,Eq.(17) can be computed based on “real 
number” operations, as following

   )()()()( 11 kifkfkifkf I
L

R
L

I
L

R
L  

 






   )

2
()

2
( 11

,,
L

I
LL

R
L

IURU NkifNkfiEE

(21)
In Eq. (21), the superscripts and denote real and
imaginary components, respectively.

R I
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Computer Implementation cont.
Multiplying the last 2 complex numbers, one obtains

   )()()()( 11 kifkfkifkf I
L

R
L

I
L

R
L  







   )

2
()

2
( 1

,
1

,
L

I
L

IU
L

R
L

RU NkfENkfE







   )

2
()

2
( 1

,
1

,
L

R
L

IU
L

I
L

RU NkfENkfEi (22)

Equating the real (and then, imaginary) components 
on the Left-Hand-Side (LHS), and the Right-Hand-Side 
(RHS) of Eq. (22), one obtains
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   






   )

2
()

2
()()( 1

,
1

,
1 L

I
L

IU
L

R
L

RUR
L

R
L

NkfENkfEkfkf

   






   )

2
()

2
()()( 1

,
1

,
1 L

R
L

IU
L

I
L

RUI
L

I
L

NkfENkfEkfkf

(23A)

(23B)

Computer implementation cont.
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Computer implementation cont.

Recall Eq. (4)
N

i
eE

2


Hence

)sin()cos(
22




ieeeE iN
Ui

U

N
iU 













 

(24)

where

N
U

N
U 28.62


 (25)

Thus:
)cos(, RUE

)sin(, IUE

(26A)

(26B)79



Computer Implementation cont.
Substituting Eqs. (26A) and (26B) into Eqs. (23A) and 
(23B), one gets

   






   )

2
()sin()

2
()cos()()( 111 L

I
LL

R
L

R
L

R
L

NkfNkfkfkf 

   






   )

2
()sin()

2
()cos()()( 111 L

R
LL

I
L

I
L

I
L

NkfNkfkfkf 

(27B)

(27A)

Similarly, the single (complex number) Eq. (18) can
be expressed as 2 equivalent (real number) Eqs. Like
Eqs. (27A) and (27B).
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