Binary Representation

Major: All Engineering Majors

Authors: Autar Kaw, Matthew Emmons

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Binary Representation

http://numericalmethods.eng.usf.edu

How a Decimal Number is Represented

$$257.76 = 2 \times 10^{2} + 5 \times 10^{1} + 7 \times 10^{0} + 7 \times 10^{-1} + 6 \times 10^{-2}$$

Base 2

$$(1011.0011)_{2} = \begin{pmatrix} (1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}) \\ + (0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}) \end{pmatrix}_{10}$$

$$= 11.1875$$

Convert Base 10 Integer to binary representation

Table 1 Converting a base-10 integer to binary representation.

	Quotient	Remainder
11/2	5	$1 = a_0$
5/2	2	$1 = a_1$
2/2	1	$0=a_2$
1/2	0	$1 = a_3$

Hence

$$(11)_{10} = (a_3 a_2 a_1 a_0)_2$$
$$= (1011)_2$$

Fractional Decimal Number to Binary

Table 2. Converting a base-10 fraction to binary representation.

	Number	Number after decimal	Number before decimal
0.1875×2	0.375	0.375	$0 = a_{-1}$
0.375×2	0.75	0.75	$0 = a_{-2}$
0.75×2	1.5	0.5	$1 = a_{-3}$
0.5×2	1.0	0.0	$1 = a_{-4}$

Hence

$$(0.1875)_{10} = (a_{-1}a_{-2}a_{-3}a_{-4})_2$$
$$= (0.0011)_2$$

Decimal Number to Binary

$$(11.1875)_{10} = (?.?)_{2}$$
Since
$$(11)_{10} = (1011)_{2}$$
and
$$(0.1875)_{10} = (0.0011)_{2}$$
we have
$$(11.1875)_{10} = (1011.0011)_{2}$$

All Fractional Decimal Numbers Cannot be Represented Exactly

Table 3. Converting a base-10 fraction to approximate binary representation.

	Number	Number after decimal	Number before Decimal
0.3×2	0.6	0.6	$0 = a_{-1}$
0.6×2	1.2	0.2	$1 = a_{-2}$
0.2×2	0.4	0.4	$0 = a_{-3}$
0.4×2	0.8	0.8	$0 = a_{-4}$
0.8×2	1.6	0.6	$1 = a_{-5}$

$$(0.3)_{10} \approx (a_{-1}a_{-2}a_{-3}a_{-4}a_{-5})_2 = (0.01001)_2 = 0.28125$$

Another Way to Look at Conversion

Convert $(11.1875)_{10}$ to base 2

$$(11)_{10} = 2^{3} + 3$$

$$= 2^{3} + 2^{1} + 1$$

$$= 2^{3} + 2^{1} + 2^{0}$$

$$= 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$= (1011)_{2}$$

$$(0.1875)_{10} = 2^{-3} + 0.0625$$

$$= 2^{-3} + 2^{-4}$$

$$= 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}$$

$$= (.0011)_{2}$$

$$(11.1875)_{10} = (1011.0011)_2$$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

<u>http://numericalmethods.eng.usf.edu/topics/binary_representation.html</u>

THE END

http://numericalmethods.eng.usf.edu