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Chapter 03.04

Newton-Raphson Method of Solving a Nonlinear Equation

After reading this chapter, you should be able to:
1. derive the Newton-Raphson method formula,
2. develop the algorithm of the Newton-Raphson method,
3. use the Newton-Raphson method to solve a nonlinear equation, and
4. discuss the drawbacks of the Newton-Raphson method.
Introduction

Methods such as the bisection method and the false position method of finding roots of a nonlinear equation 
[image: image142.wmf] require bracketing of the root by two guesses.  Such methods are called bracketing methods.  These methods are always convergent since they are based on reducing the interval between the two guesses so as to zero in on the root of the equation.

In the Newton-Raphson method, the root is not bracketed.  In fact, only one initial guess of the root is needed to get the iterative process started to find the root of an equation.  The method hence falls in the category of open methods.  Convergence in open methods is not guaranteed but if the method does converge, it does so much faster than the bracketing methods.
Derivation
The Newton-Raphson method is based on the principle that if the initial guess of the root of 
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-axis is an improved estimate of the root (Figure 1).

Using the definition of the slope of a function, at 
[image: image7.wmf]i

x

x

=



[image: image8.wmf](

)

θ

 = 

x

f

i

tan

¢



[image: image9.wmf](

)

1

0

+

-

-

i

i

i

x

x

x

f

 = 

,
which gives


[image: image10.wmf](

)

(

)

i

i

i

i

x

f

x

f

 = x

x

¢

-

+

1








(1)

Equation (1) is called the Newton-Raphson formula for solving nonlinear equations of the form 
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.  So starting with an initial guess, 
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, one can find the next guess, 
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, by using Equation (1).  One can repeat this process until one finds the root within a desirable tolerance.

Algorithm

The steps of the Newton-Raphson method to find the root of an equation 
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1. Evaluate 
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2. Use an initial guess of the root, 
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, to estimate the new value of the root, 
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3. Find the absolute relative approximate error 
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4. Compare the absolute relative approximate error with the pre-specified relative error tolerance, 
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.  If 
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, then go to Step 2, else stop the algorithm.  Also, check if the number of iterations has exceeded the maximum number of iterations allowed.  If so, one needs to terminate the algorithm and notify the user.
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	                           Figure 1  Geometrical illustration of the Newton-Raphson method.


	


Example 1

A trunnion has to be cooled before it is shrink fitted into a steel hub. 

	[image: image25.png]




	Figure 2  Trunnion to be slid through the hub after contracting.


The equation that gives the temperature 
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 to which the trunnion has to be cooled to obtain the desired contraction is given by
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Use the Newton-Raphson method of finding roots of equations to find the temperature 
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T

 to which the trunnion has to be cooled. Conduct three iterations to estimate the root of the above equation. Find the absolute relative approximate error at the end of each iteration and

the number of significant digits at least correct at the end of each iteration.

Solution
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Let us assume the initial guess of the root of 
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Iteration 1

The estimate of the root is


[image: image33.wmf](

)

(

)

0

,

0

,

0

,

1

,

f

f

f

f

T

f

T

f

T

T

¢

-

=


         

                   
[image: image34.wmf](

)

(

)

(

)

(

)

(

)

4

7

2

11

2

4

2

7

3

10

10

 

74363

.

0

100

10

 

76582

.

0

100

10

 

5179

.

1

10

 

88318

.

0

100

10

 

74363

.

0

100

10

 

38292

.

0

100

10

 

50598

.

0

100

-

-

-

-

-

-

-

´

+

-

´

+

-

´

÷

÷

ø

ö

ç

ç

è

æ

´

+

-

´

+

-

´

+

-

´

-

-

-

=

 

 

 

 

 

 

 


           

                   
[image: image35.wmf]5

3

10

 

5187

.

6

10

 

8290

.

1

100

-

-

´

´

-

-

=

 

 



       
[image: image36.wmf](

)

058

.

28

100

-

-

=



       
[image: image37.wmf]06

.

128

-

=


The absolute relative approximate error 
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 at the end of Iteration 1 is
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The number of significant digits at least correct is 0, as you need an absolute relative approximate error of less than 5% for one significant digit to be correct in your result.

Iteration 2

The estimate of the root is
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The absolute relative approximate error 
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 at the end of Iteration 2 is
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The number of significant digits at least correct is 1.

Iteration 3

The estimate of the root is
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The absolute relative approximate error 
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 at the end of Iteration 3 is
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Hence the number of significant digits at least correct is given by the largest value of 
[image: image60.wmf]m

 for which



[image: image61.wmf]m

a

-

´

£

Î

2

10

5

.

0




[image: image62.wmf]m

 

-

-

´

£

´

2

4

10

5

.

0

10

 

5086

.

3




[image: image63.wmf]m

 

-

-

£

´

2

4

10

10

 

0173

.

7




[image: image64.wmf](

)

m

 

-

£

´

-

2

10

 

0173

.

7

log

4




[image: image65.wmf](

)

1538

.

5

10

 

0173

.

7

log

2

4

=

´

-

£

-

 

m


So


[image: image66.wmf]5

=

m


The number of significant digits at least correct in the estimated root –128.75 is 5.

Drawbacks of the Newton-Raphson Method

1. Divergence at inflection points
 If the selection of the initial guess or an iterated value of the root turns out to be close to the inflection point (see the definition in the appendix of this chapter) of the function 
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, Newton-Raphson method may start diverging away from the root.  It may then start converging back to the root.  For example, to find the root of the equation
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the Newton-Raphson method reduces to
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Starting with an initial guess of 
[image: image71.wmf]0

.

5

0

=

x

, Table 1 shows the iterated values of the root of the equation.  As you can observe, the root starts to diverge at Iteration 6 because the previous estimate of 0.92589 is close to the inflection point of 
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 is zero at the inflection point). Eventually, after 12 more iterations the root converges to the exact value of 
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Table 1   Divergence near inflection point.
	Iteration
Number
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	0
	5.0000

	1
	3.6560

	2
	2.7465

	3
	2.1084

	4
	1.6000

	5
	0.92589

	6
	–30.119

	7
	–19.746

	8
	–12.831

	9
	–8.2217

	10
	–5.1498

	11
	–3.1044

	12
	–1.7464

	13
	–0.85356

	14
	–0.28538

	15
	0.039784

	16
	0.17475

	17
	0.19924

	18
	0.2
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Figure 3   Divergence at inflection point for 
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2. Division by zero 
For the equation 
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the Newton-Raphson method reduces to 
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For 
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, division by zero occurs (Figure 4).  For an initial guess close to 0.02 such as 
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, one may avoid division by zero, but then the denominator in the formula is a small number.  For this case, as given in Table 2, even after 9 iterations, the Newton-Raphson method does not converge.

Table 2   Division by near zero in Newton-Raphson method.
	Iteration 
Number
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	         Figure 4   Pitfall of division by zero or a near zero number.


3. Oscillations near local maximum and minimum 
Results obtained from the Newton-Raphson method may oscillate about the local maximum or minimum without converging on a root but converging on the local maximum or minimum. Eventually, it may lead to division by a number close to zero and may diverge.

For example, for
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 the equation has no real roots (Figure 5 and Table 3).
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	        Figure 5   Oscillations around local minima for 
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Table 3   Oscillations near local maxima and minima in Newton-Raphson method.

	Iteration 
Number
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4. Root jumping 
In some case where the function 
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 is oscillating and has a number of roots, one may choose an initial guess close to a root.  However, the guesses may jump and converge to some other root.  For example for solving the equation 
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Table 4   Root jumping in Newton-Raphson method.
	Iteration 
Number
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	Figure 6   Root jumping from intended location of root for 
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Appendix A. What is an inflection point?
For a function 
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, the point where the concavity changes from up-to-down or down-to-up is called its inflection point.  For example, for the function 
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Appendix B. Derivation of Newton-Raphson method from Taylor series

Newton-Raphson method can also be derived from Taylor series.  For a general function 
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As an approximation, taking only the first two terms of the right hand side,
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and we are seeking a point where 
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which gives
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This is the same Newton-Raphson method formula series as derived previously using the geometric method.
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