Romberg Rule of Integration

Mechanical Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Romberg Rule of Integration

http://numericalmethods.eng.usf.edu

Basis of Romberg Rule

Integration

The process of measuring the area under a curve.

у

$$I = \int_{a}^{b} f(x) dx$$

Where:

f(x) is the integrand

a = lower limit of integration

b= upper limit of integration

What is The Romberg Rule?

Romberg Integration is an extrapolation formula of the Trapezoidal Rule for integration. It provides a better approximation of the integral by reducing the True Error.

The true error in a multiple segment Trapezoidal Rule with n segments for an integral

$$I = \int_{a}^{b} f(x) dx$$

Is given by

$$E_{t} = \frac{(b-a)^{3}}{12n^{2}} \frac{\sum_{i=1}^{n} f''(\xi_{i})}{n}$$

where for each *i*, ξ_i is a point somewhere in the domain , [a + (i-1)h, a + ih].

The term $\sum_{i=1}^{n} f''(\xi_i)$ can be viewed as an approximate average value of f''(x) in [a,b].

This leads us to say that the true error, E_t previously defined can be approximated as

$$E_t \approx \alpha \frac{1}{n^2}$$

Table 1 shows the results obtained for the integral using multiple segment Trapezoidal rule for

$$x = \int_{8}^{30} \left(2000 \ln \left[\frac{140000}{140000 - 2100t} \right] - 9.8t \right) dt$$

n	Value	Et	$ \epsilon_t $ %	$ \epsilon_a \%$
1	11868	807	7.296	
2	11266	205	1.854	5.343
3	11153	91.4	0.8265	1.019
4	11113	51.5	0.4655	0.3594
5	11094	33.0	0.2981	0.1669
6	11084	22.9	0.2070	0.09082
7	11078	16.8	0.1521	0.05482
8	11074	12.9	0.1165	0.03560

Table 1: Multiple Segment Trapezoidal Rule Values

The true error gets approximately quartered as the number of segments is doubled. This information is used to get a better approximation of the integral, and is the basis of Richardson's extrapolation.

Richardson's Extrapolation for Trapezoidal Rule

The true error, E_t in the *n*-segment Trapezoidal rule is estimated as

$$E_t \approx \frac{C}{n^2}$$

where *C* is an *approximate constant* of proportionality. Since

$$E_t = TV - I_n$$

Where TV = true value and I_n = approx. value

Richardson's Extrapolation for Trapezoidal Rule

From the previous development, it can be shown that

when the segment size is doubled and that

$$TV \approx I_{2n} + \frac{I_{2n} - I_n}{3}$$

which is Richardson's Extrapolation.

Example 1

A trunnion of diameter 12.363" has to be cooled from a room temperature of 80°F before it is shrink fit into a steel hub (Figure 2).

The equation that gives the diametric contraction of the trunnion in dry-ice/alcohol (boiling temperature is - 108°F) is given by:

$$\Delta D = 12.363 \int_{80}^{-108} \left(-1.2278 \times 10^{-11} T^2 + 6.1946 \times 10^{-9} T + 6.015 \times 10^{-6} \right) dT$$

Figure 2. Trunnion to be slided through the hub after contracting.

- a) Use Richardson's rule to find the contraction. Use the 2-segment and 4-segment Trapezoidal rule results given in Table 1.
- b) Find the true error, E_t for part (a).
- c) Find the absolute relative true error, $|\epsilon_a|$ for part (a).

http://numericalmethods.eng.usf.edu

Solution

п	Trapezoidal Rule	I 0.012(20)
1	-0.013536	$I_2 = -0.013630in$
2	-0.013630	$I \qquad 0.012(70)$
4	-0.013679	$I_4 = -0.0136/9in$
8	-0.013687	

Using Richardson's extrapolation formula for Trapezoidal rule

$$TV \approx I_{2n} + \frac{I_{2n} - I_n}{3} \quad \text{and choosing } n = 2,$$

$$TV \approx I_4 + \frac{I_4 - I_2}{3} \approx -0.013679 + \frac{-0.013679 - (-0.01360)}{3} \approx -0.013670 in$$

http://numericalmethods.eng.usf.edu

b) The exact value of the above integral is

$$\Delta D = 12.363 \int_{80}^{-108} (-1.2278 \times 10^{-11} T^2 + 6.1946 \times 10^{-9} T + 6.015 \times 10^{-6}) dT$$
$$= -0.013689 in$$

Hence

$$E_t = True \ Value - Approximate \ Value = -0.013689 - (-0.013670)$$

= 5.5212×10⁻⁷ in

c) The absolute relative true error $|\epsilon_t|$ would then be

$$\left| \in_{t} \right| = \left| \frac{\text{True Error}}{\text{True Value}} \right| \times 100$$
$$= \left| \frac{5.5212 \times 10^{-7}}{-0.013689} \right| \times 100$$
$$= 0.0040332\%$$

Table 2 shows the Richardson's extrapolation results using 1, 2, 4, 8 segments. Results are compared with those of Trapezoidal rule.

Table 2 The values obtained using Richardson'sextrapolation formula for Trapezoidal rule for

 $\Delta D = 12.363 \int_{80}^{-108} \left(-1.2278 \times 10^{-11} T^2 + 6.1946 \times 10^{-9} T + 6.015 \times 10^{-6} \right) dT$

n	Trapezoidal Rule	$\left \in_{t} \right $ for Trapezoidal Rule	Richardson's Extrapolation	$\left \in_{t} \right $ for Richardson's Extrapolation
1	-0.013536	1.1177		
2	-0.013630	0.43100	-0.013661	0.20294
4	-0.013679	0.076750	-0.013695	0.045429
8	-0.013687	0.019187	-0.013690	0.0040332

Romberg integration is same as Richardson's extrapolation formula as given previously. However, Romberg used a recursive algorithm for the extrapolation. Recall

$$TV \approx I_{2n} + \frac{I_{2n} - I_n}{3}$$

This can alternately be written as

$$(I_{2n})_R = I_{2n} + \frac{I_{2n} - I_n}{3} = I_{2n} + \frac{I_{2n} - I_n}{4^{2-1} - 1}$$

Note that the variable *TV* is replaced by $(I_{2n})_R$ as the value obtained using Richardson's extrapolation formula. Note also that the sign \approx is replaced by = sign. Hence the estimate of the true value now is

$$TV \approx \left(I_{2n}\right)_R + Ch^4$$

Where Ch⁴ is an approximation of the true error.

Determine another integral value with further halving the step size (doubling the number of segments),

$$(I_{4n})_R = I_{4n} + \frac{I_{4n} - I_{2n}}{3}$$

It follows from the two previous expressions that the true value TV can be written as

$$TV \approx (I_{4n})_{R} + \frac{(I_{4n})_{R} - (I_{2n})_{R}}{15}$$

$$= I_{4n} + \frac{(I_{4n})_R - (I_{2n})_R}{4^{3-1} - 1}$$

http://numericalmethods.eng.usf.edu

A general expression for Romberg integration can be written as

$$I_{k,j} = I_{k-1,j+1} + \frac{I_{k-1,j+1} - I_{k-1,j}}{4^{k-1} - 1}, k \ge 2$$

The index *k* represents the order of extrapolation. k=1 represents the values obtained from the regular Trapezoidal rule, k=2 represents values obtained using the true estimate as O(h²). The index *j* represents the more and less accurate estimate of the integral.

Example 2

A trunnion of diameter 12.363" has to be cooled from a room temperature of 80°F before it is shrink fit into a steel hub (Figure 2). The equation that gives the diametric contraction of the trunnion in dry-ice/alcohol (boiling temperature is -108°F) is given by:

$$\Delta D = 12.363 \int_{80}^{-108} \left(-1.2278 \times 10^{-11} T^2 + 6.1946 \times 10^{-9} T + 6.015 \times 10^{-6} \right) dT$$

Use Romberg's rule to find the contraction. Use the 1, 2, 4, and 8-segment Trapezoidal rule results as given in the Table 1.

Solution

From Table 1, the needed values from original Trapezoidal rule are

$$I_{1,1} = -0.013536in$$
 $I_{1,2} = -0.013630in$

 $I_{1,3} = -0.013679in$ $I_{1,4} = -0.013687in$

where the above four values correspond to using 1, 2, 4 and 8 segment Trapezoidal rule, respectively.

To get the first order extrapolation values,

$$I_{2,1} = I_{1,2} + \frac{I_{1,2} - I_{1,1}}{3}$$

= -0.013630 + $\frac{-0.013630 - (-0.013536)}{3}$
= -0.013661*in*

Similarly,

$$\begin{split} I_{2,2} &= I_{1,3} + \frac{I_{1,3} - I_{1,2}}{3} \\ &= -0.013679 + \frac{-0.013679 - (-0.013630)}{3} \\ &= -0.013695 in \end{split} \qquad I_{2,3} = I_{1,4} + \frac{I_{1,4} - I_{1,3}}{3} \\ &= -0.013687 + \frac{-0.013687 - (-0.013679)}{3} \\ &= -0.013695 in \end{aligned}$$

For the second order extrapolation values, $I_{3,1} = I_{2,2} + \frac{I_{2,2} - I_{2,1}}{15}$ $= -0.013695 + \frac{-0.013695 - (-0.013661)}{15}$ = -0.013698in

Similarly,

$$I_{3,2} = I_{2,3} + \frac{I_{2,3} - I_{2,2}}{15}$$

= -0.013695 + $\frac{-0.013695 - (-0.013695)}{15}$
= -0.013690*in*

For the third order extrapolation values,

$$I_{4,1} = I_{3,2} + \frac{I_{3,2} - I_{3,1}}{63}$$

= -0.013690 + $\frac{-0.013690 - (-0.013698)}{63}$
= -0.013689in

Table 3 shows these increased correct values in a tree graph.

 Table 3: Improved estimates of the integral value using Romberg Integration

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/romberg_ method.html

THE END

http://numericalmethods.eng.usf.edu