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Basis of Romberg Rule
Integration
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The process of measuring 
the area under a curve.

Where: 

f(x) is the integrand

a= lower limit of integration

b= upper limit of integration

f(x)

a b

y

x

∫
b

a

dx)x(f



http://numericalmethods.eng.usf.edu4

What is The Romberg Rule?

Romberg Integration is an extrapolation formula of 
the Trapezoidal Rule for integration.  It provides a 
better approximation of the integral by reducing the 
True Error.
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Error in Multiple Segment  
Trapezoidal Rule

The true error in a multiple segment Trapezoidal

Rule with n segments for an integral

Is given by

∫=
b

a
dx)x(fI

( ) ( )

n

f

n
abE

n

i
i

t

∑
=

ξ′′−
= 1

2

3

12

where for each i,    is a point somewhere in the 
domain ,                           .

iξ
( )[ ]iha,hia +−+ 1



http://numericalmethods.eng.usf.edu6

Error in Multiple Segment  
Trapezoidal Rule

The term                   can be viewed as an ( )
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This leads us to say that the true error, Et

previously defined can be approximated as 
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Error in Multiple Segment  
Trapezoidal Rule

Table 1 shows the results 
obtained for the integral 
using multiple segment 
Trapezoidal rule for

n Value Et

1 11868 807 7.296 ---

2 11266 205 1.854 5.343

3 11153 91.4 0.8265 1.019

4 11113 51.5 0.4655 0.3594

5 11094 33.0 0.2981 0.1669

6 11084 22.9 0.2070 0.09082

7 11078 16.8 0.1521 0.05482

8 11074 12.9 0.1165 0.03560
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Table 1: Multiple Segment Trapezoidal Rule Values
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Error in Multiple Segment  
Trapezoidal Rule

The true error gets approximately  quartered as 
the number of segments is doubled.  This 
information is used to get a better approximation 
of the integral, and is the basis of Richardson’s 
extrapolation.
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Richardson’s Extrapolation for 
Trapezoidal Rule

The true error,     in the n-segment Trapezoidal rule 
is estimated as   

tE

2n
CEt ≈

where C is an approximate constant of 
proportionality.  Since

nt ITVE −=

Where TV = true value and      = approx. valuenI
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Richardson’s Extrapolation for 
Trapezoidal Rule

From the previous development, it can be shown 
that
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when the segment size is doubled and that 
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which is Richardson’s Extrapolation.
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Example 1
A trunnion of diameter 12.363” has to be cooled from a 
room temperature of 800F before it is shrink fit into a 
steel hub (Figure 2). 
The equation that gives the diametric contraction of the 
trunnion in dry-ice/alcohol (boiling temperature is -
1080F) is given by:

a) Use Richardson’s rule to find the contraction.  Use the 2-segment and 4-segment 
Trapezoidal rule results given in Table 1.

b) Find the true error,       for part (a).
c) Find the absolute relative true error,      for part (a).

( )∫
−

−−− ×+×+×−=∆
108

80

69211 10015.6101946.6102278.1363.12 dTTTD

Figure 2. Trunnion to be slided through the 
hub after contracting.

a∈
tE
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Solution

a)  

Using Richardson’s extrapolation formula for Trapezoidal rule

inI 013630.02 −=

inI 013679.04 −=

3
2

2
nn

n
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+≈ and choosing n=2,

( ) inIIITV 013670.0
3
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3

24
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−−−
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−
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n Trapezoidal Rule
1 −0.013536
2 −0.013630
4 −0.013679
8 −0.013687
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Solution (cont.)

b) The exact value of the above integral is 

Hence

( )
in105212.5

013670.0013689.0
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Solution (cont.)
c) The absolute relative true error t∈ would then be 

Table 2 shows the Richardson’s extrapolation 
results using 1, 2, 4, 8 segments.  Results are 
compared with those of Trapezoidal rule.
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n Trapezoidal Rule for 
Trapezoidal Rule

Richardson’s 
Extrapolation

for 
Richardson’s 
Extrapolation

1
2
4
8

−0.013536
−0.013630
−0.013679
−0.013687

1.1177
0.43100
0.076750
0.019187

--
−0.013661
−0.013695
−0.013690

--
0.20294
0.045429

0.0040332
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Solution (cont.)
Table 2 The values obtained using Richardson’s 
extrapolation formula for Trapezoidal rule for
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Romberg Integration
Romberg integration is same as Richardson’s 
extrapolation formula as given previously.  However, 
Romberg used a recursive algorithm for the 
extrapolation.  Recall 
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This can alternately be written as
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Note that the variable TV is replaced by           as the 
value obtained using Richardson’s extrapolation formula.  
Note also that the sign     is replaced by = sign.

( )RnI 2

≈

Romberg Integration

Hence the estimate of the true value now is

( ) 4
2 ChITV Rn +≈

Where Ch4 is an approximation of the true error. 
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Romberg Integration
Determine another integral value with further halving
the step size (doubling the number of segments),
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It follows from the two previous expressions 
that the true value TV can be written as
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Romberg Integration
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The index k represents the order of extrapolation. 
k=1 represents the values obtained from the regular 
Trapezoidal rule, k=2 represents values obtained using the 
true estimate as O(h2). The index j represents the more and 
less accurate estimate of the integral. 

A general expression for Romberg integration can be 
written as 
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Example 2

A trunnion of diameter 12.363” has to be cooled from a room temperature of 
80oF before it is shrink fit into a steel hub (Figure 2).  The equation that gives 
the diametric contraction of the trunnion in dry-ice/alcohol (boiling temperature 
is −108oF) is given by:

( )∫
−

−−− ×+×+×−=∆
108

80

69211 10015.6101946.6102278.1363.12 dTTTD

Use Romberg’s rule to find the contraction.  Use the 1, 2, 4, and 8-segment 
Trapezoidal rule results as given in the Table 1.
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Solution
From Table 1, the needed values from original 
Trapezoidal rule are

where the above four values correspond to using 1, 2, 
4 and 8 segment Trapezoidal rule, respectively.  

inI 013536.01,1 −= inI 013630.02,1 −=

inI 013679.03,1 −= inI 013687.04,1 −=
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Solution (cont.)
To get the first order extrapolation values,

Similarly,
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Solution (cont.)
For the second order extrapolation values,

Similarly,
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Solution (cont.)

For the third order extrapolation values,

Table 3 shows these increased correct values in a tree 
graph. 

( )
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013689.0
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63
1,32,3

2,31,4
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Solution (cont.)

Table 3: Improved estimates of the integral value using Romberg Integration

1-segment

2-segment

4-segment

8-segment

−0.013536

− 0.013630

−0.013679

− 0.013687

− 0.013661

− 0.013695

− 0.013695

− 0.013698

− 0.013690

− 0.013689

1st Order 2nd Order 3rd Order



Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit

http://numericalmethods.eng.usf.edu/topics/romberg_
method.html

http://numericalmethods.eng.usf.edu/topics/gaussian_elimination.html�
http://numericalmethods.eng.usf.edu/topics/romberg_method.html�
http://numericalmethods.eng.usf.edu/topics/romberg_method.html�
http://numericalmethods.eng.usf.edu/topics/gaussian_elimination.html�


THE END
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