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Runge-Kutta 2"® Order Method
or = £(0,),9(0) = ¥,

Runge Kutta 2nd order method is given by

Yin=Yi (alkl +a,k, )h

where
ke = £ (%, Yi)

ky = f(Xi + prh, y; + Chlklh)



Heun’s Method

Heun's method , Slope = f(x, +h, y, + k)
Here a,=1/2 is chosen ! —v—>
1 yi., predicted
a) == ”
2
pp=1 :
i1 = 1 ; Average Slope = %[f (x; +h,y, +kh)+ f(x;,y)]
v
resulting in
1 1
Yiaa =i +(§k1+§k2jh - — > x
where _
(= t(x.y,) Figure 1 Runge-Kutta 2nd order method (Heun’s method)
1 i1 Ji

k, = f(x, +h,y, +kh)
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Midpoint Method

Here a,=1 ischosen, giving
al = O
b=

Qi1 =

N~ NP

resulting in
Yit1 =i +Koh
where
k= £ 04, ¥i)
K, = f(xi +%h, y, +%klhj



Ralston’s Method

Here a -2 is chosen, giving
3

=L
3
3
Py = Z
3
O = Z
resulting in
Vi = Vi +(%kl +§k2)h
where
ky = (%, ¥;)

3 3
k,=f| x.+=h,y. +—=k,h
2 (I 4 yl 41j



How to write Ordinary Differential
Equation

How does one write a first order differential equation in the form of
dy

— = (x,

dx (xy)

Example

dy X
—+2y=13e"",y(0)=5
T2y y(0)

IS rewritten as

dy X
= —13e* -2y y(0)=5
L~ y, y(0)

In this case

f(x,y)=1.3e7% -2y



Example

The concentration of salt, X in a home made soap maker is

given as a function of time by

gi:37.5—3.5X
dt

At the initial time, £ = 0, the salt concentration In the tank is
50g/L. Using Euler’'s method and a step size of /=1.5 min,
what Is the salt concentration after 3 minutes.

95:37.5—3.5X
dt

f(t,x)=37.5-3.5x

1 1
Xi+1 = Xi +[Ek1 +§k2jh



Solution
Step1: =0, t,=0, x,=50
k, = f(t,,x,)= f(0,50)=37.5-3.5(50) = ~137.50

k, = f(t, +h,x, +kh)= f(0+1.550+(-137.50)1.5)= f(1.5,-156.25)
—37.5-3.5(-156.25) = 584.38

1 1
Xl = XO +(§k1 +§k2)h

=50+ 6 (—137.50)+%(584.38)j1.5
=50+ (223.44)L.5 X, Is the approximate concentration of
—385.169 /L

saltat ¢ _¢ _t +h=0+1.5=15min
X(1.5)~ x, =385.169/L
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Solution Cont

Step 2: 1=1t =t,+h=0+15=1.5x, =385.169/L

k, = f(t,x )= f(1.5385.16)=37.5—3.5(385.16) = —~1310.5

k,= f(t,+h,x +kh)=f(1.5+1.5385.16+(-1310.5)1.5)= f(3,~1580.6)
= 37.5—-3.5(—1580.6) = 5569.8

1 1
X2 = X1+(§k1 +§k2jh

—385.16+ G (—1310.5)+%(5569.8))1.5
=385.16+(2129.6)1.5 X, is the approximate concentration of
=3579.7¢g/L salt at

t=t,=t,+h=1.5+1.5=3min
X(3)~ x, =3579.7¢g/L
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Solution Cont

The exact solution of the ordinary differential equation is
given by

x(t) =10.714 + 39.286e >

The solution to this nonlinear equation at t=3 minutes is

x(3)=10.715 g/L



12

Comparison with exact results
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Figure 2. Heun’s method results for different step sizes



Effect of step size

Table 1. Effect of step size for Heun’s method

Step size, h X(3) E, e, | %
3 1803.1 | —1792.4 16727
1.5 3579.6 | —3568.9 33306

0.75 442.05 | —431.34 4025.4
0.375 11.038 | —0.32231 3.0079
0.1875 10.718 |—0.0024979 | 0.023311

X(3) =10.715 (exact)
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Effects of step size on Heun'’s
Method
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Figure 3. Effect of step size in Heun’s method



Comparison of Euler and Runge-
Kutta 2"d Order Methods

Table 2. Comparison of Euler and the Runge-Kutta methods

15

Step size, X(3)
1 Euler Heun Midpoint Ralston
3 —362.50 | 1803.1 1803.1 1803.1
1.5 720.31 | 3579.6 3579.6 3579.6
0.75 284.65 | 442.05 442.05 442.05
0.375 10.718 | 11.038 11.038 11.038
0.1875 10.714 | 10.718 10.718 10.718

X(3) =10.715 (exact)




Comparison of Euler and Runge-
Kutta 2"d Order Methods

Table 2. Comparison of Euler and the Runge-Kutta methods
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Step size, (%

: Euler Heun Midpoint | Ralston
3 3483.0 16727 16727 16727
1.5 6622.2 33306 33306 33306
0.75 2556.5 4025.4 4025.4 4025.4
0.375 0.023249 | 3.0079 3.0079 3.0079
0.1875 0.010082 |0.023311 |0.023311 |0.023311

X(3) =10.715 (exact)




Comparison of Euler and Runge-
Kutta 2"d Order Methods
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Figure 4. Comparison of Euler and Runge Kutta 2"? order

methods with exact results.
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Additional Resources

For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice
tests, worksheets in MATLAB, MATHEMATICA, MathCad
and MAPLE, blogs, related physical problems, please
visit

http://numericalmethods.eng.usf.edu/topics/runge_Kkutt
a_2nd_method.html
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THE END
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