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Runge-Kutta 2nd Order Method

Runge Kutta 2nd order method is given by 
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Heun’s Method
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Figure 1  Runge-Kutta 2nd order method (Heun’s method) 
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Heun’s method
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where
( )ii yxfk ,1 =

( )hkyhxfk ii 12 , ++=

Here a2=1/2 is chosen
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Midpoint Method
Here 12 =a is chosen, giving
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Ralston’s Method
Here 
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How to write Ordinary Differential 
Equation

Example

( ) 50,3.12 ==+ − yey
dx
dy x

is rewritten as

( ) 50,23.1 =−= − yye
dx
dy x

In this case

( ) yeyxf x 23.1, −= −

How does one write a first order differential equation in the form of

( )yxf
dx
dy ,=
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Example

The concentration of salt,    in a home made soap maker is 
given as a function of time by

x

x
dt
dx 5.35.37 −=

At the initial time, t = 0, the salt concentration in the tank is 
50g/L. Using Euler’s method and a step size of h=1.5 min, 
what is the salt concentration after 3 minutes.

x
dt
dx 5.35.37 −=

( ) xxtf 5.35.37, −=

hkkxx ii 
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Solution
Step 1: 50,0,0 00 === xti

( ) ( ) ( ) 50.137505.35.3750,0,01 −=−=== fxtfk o

( ) ( )( ) ( )
( ) 38.58425.1565.35.37

25.156,5.15.150.13750,5.10, 1002

=−−=
−=−++=++= ffhkxhtfk

( ) ( )
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Lg

hkkxx

/16.385
5.144.22350
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2
1
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 +−+=
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x1 is the approximate concentration of 
salt at min5.15.1001 =+=+== httt

( ) g/L16.3855.1 1 =≈ xx
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Solution Cont
Step 2: Lgxhtti /16.385,5.15.10,1 101 ==+=+==

( ) ( ) ( ) 5.131016.3855.35.3716.385,5.1, 111 −=−=== fxtfk

( ) ( )( ) ( )
( ) 8.55696.15805.35.37

6.1580,35.15.131016.385,5.15.1, 1112

=−−=
−=−++=++= ffhkxhtfk

( ) ( )

( )
Lg

hkkxx

/7.3579
5.16.212916.385

5.18.5569
2
15.1310

2
116.385

2
1

2
1

2112

=
+=







 +−+=







 ++=

x1 is the approximate concentration of 
salt at min35.15.112 =+=+== httt

( ) g/L7.35793 1 =≈ xx
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Solution Cont

The exact solution of the ordinary differential equation is 
given by

The solution to this nonlinear equation at t=3 minutes is

xetx 5.3286.39714.10)( −+=

( ) g/L715.103 =x
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Comparison with exact results

Figure 2. Heun’s method results for different step sizes 



Step size, 

3
1.5
0.75
0.375
0.1875

1803.1
3579.6
442.05
11.038
10.718

−1792.4
−3568.9
−431.34
−0.32231
−0.0024979

16727
33306
4025.4
3.0079

0.023311
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Effect of step size

h tE %|| t∈

(exact)

( )3x

715.10)3( =x

Table 1. Effect of step size for Heun’s method
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Effects of step size on Heun’s 
Method

Figure 3. Effect of step size in Heun’s method 



Step size,
h Euler Heun Midpoint Ralston
3

1.5
0.75

0.375
0.1875

−362.50
720.31
284.65
10.718
10.714

1803.1
3579.6
442.05
11.038
10.718

1803.1
3579.6
442.05
11.038
10.718

1803.1
3579.6
442.05
11.038
10.718
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Comparison of Euler and Runge-
Kutta 2nd Order Methods

Table 2. Comparison of Euler and the Runge-Kutta methods

(exact)715.10)3( =x

)3(x
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Comparison of Euler and Runge-
Kutta 2nd Order Methods

Table 2. Comparison of Euler and the Runge-Kutta methods

(exact)

Step size,
h Euler Heun Midpoint Ralston

3
1.5
0.75
0.375
0.1875

3483.0
6622.2
2556.5
0.023249
0.010082

16727
33306
4025.4
3.0079
0.023311 

16727
33306
4025.4
3.0079
0.023311

16727
33306
4025.4
3.0079
0.023311

715.10)3( =x

%t∈
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Comparison of Euler and Runge-
Kutta 2nd Order Methods

Figure 4.  Comparison of Euler and Runge Kutta 2nd order 
methods with exact results. 



Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit

http://numericalmethods.eng.usf.edu/topics/runge_kutt
a_2nd_method.html

http://numericalmethods.eng.usf.edu/topics/runge_kutta_2nd_method.html�
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