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Computer Engineering

Problem Statement
Many super computers do not have a unit to divide numbers.  But why?  Well, a divide operation in modern computers can take 20 to 25 clock cycles, and that is five times what it takes for multiplication [1].  Instead, a divide unit, based on numerically solving a nonlinear equation, is developed.  This allows for a faster divide operation.  This is how it works.

If you want to find the value of 
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where 
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So, if one is able to find 
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, we only need to multiply 
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.  So how do we find 
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Equation
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can be written as an equation
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If one is able to find the root of this equation without using a division, then we have the value of 
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Although we do not explain the numerical methods of solving nonlinear equations in this section of the notes, it becomes necessary to do so in this example.  The Newton-Raphson method of solving a nonlinear equation is used in finding 
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.  The Newton Raphson method of solving an equation 
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 is given by the iterative formula
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 is the new approximation of of the root of 
[image: image18.wmf]0

)

(

=

c

f

 and 



[image: image19.wmf]i

c

 is the previous approximation of the root of 
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What is the appropriate function to use to find the inverse of 
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a) Using   
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gives
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and the Newton-Raphson method formula gives
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This is of no use as it involves division.

b) Using   
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This one is the acceptable iterative formula to find the inverse of 
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 as it does not involve division.


Starting with an initial guess for the inverse of 
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, one can find newer approximations by using the above iterative formula.  Each iteration requires two multiplications and one subtraction.  However, the number of iterations required to find the inverse of 
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 very much depends on the initial approximation.  More accurate is the starting approximation, less number of iterations are required to find the inverse of 
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.  Since the convergence of Newton Raphson method is quadratic, it may take up to six iterations to get an accurate reciprocal in double precision.  By using look-up tables for the initial approximation, the number of iterations required can be reduced to two [2].  Also, the operation of 
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 may be carried in a fused multiply-subtract unit to further reduce the clock cycles needed for the computation.
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Appendix A: Example of using Newton–Raphson method to find the inverse of a number.

Let us find 
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The Newton –Raphson method formula is given by
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Starting with estimate of inverse as 
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It took four iterations to find the inverse of 2.5 correct up to 4 significant digits.

	Topic
	NONLINEAR EQUATION

	Sub Topic
	Physical Problem

	Summary
	For efficient design of the Cray supercomputer, it does not have a divide unit.  It uses solution of a nonlinear equation to find the inverse of a number.

	Authors
	Autar Kaw

	Last Revised
	December 7, 2008 

	Web Site
	http://numericalmethods.eng.usf.edu
























































































































































































































































03.00D.1


_1283078537.unknown

_1283078689.unknown

_1283078880.unknown

_1283078902.unknown

_1287814260.unknown

_1287814320.unknown

_1287814331.unknown

_1287814300.unknown

_1283078923.unknown

_1283078936.unknown

_1283078945.unknown

_1283078915.unknown

_1283078888.unknown

_1283078899.unknown

_1283078884.unknown

_1283078764.unknown

_1283078851.unknown

_1283078873.unknown

_1283078778.unknown

_1283078744.unknown

_1283078758.unknown

_1283078732.unknown

_1283078656.unknown

_1283078671.unknown

_1283078680.unknown

_1283078665.unknown

_1283078611.unknown

_1283078621.unknown

_1283078600.unknown

_1283078416.unknown

_1283078448.unknown

_1283078475.unknown

_1283078508.unknown

_1283078466.unknown

_1283078426.unknown

_1283078436.unknown

_1283078423.unknown

_1283078091.unknown

_1283078316.unknown

_1283078320.unknown

_1283078167.unknown

_1283078182.unknown

_1283078154.unknown

_1283077960.unknown

_1283078085.unknown

_1283077928.unknown

