Romberg Rule of Integration

Computer Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Romberg Rule of Integration

http://numericalmethods.eng.usf.edu

Basis of Romberg Rule

Integration

The process of measuring the area under a curve.

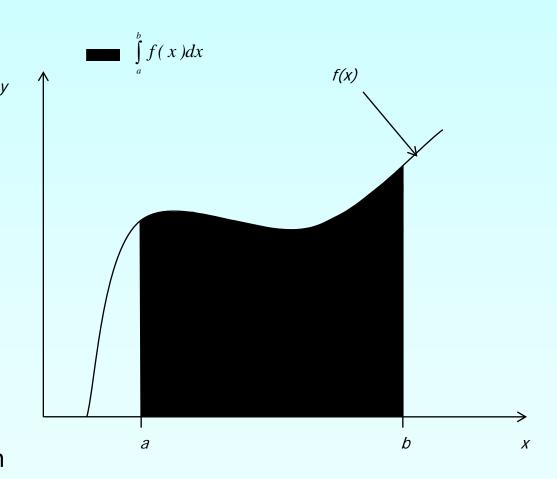
$$I = \int_{a}^{b} f(x) dx$$

Where:

f(x) is the integrand

a= lower limit of integration

b= upper limit of integration



What is The Romberg Rule?

Romberg Integration is an extrapolation formula of the Trapezoidal Rule for integration. It provides a better approximation of the integral by reducing the True Error.

The true error in a multiple segment Trapezoidal Rule with n segments for an integral

$$I = \int_{a}^{b} f(x) dx$$

Is given by

$$E_{t} = \frac{(b-a)^{3} \sum_{i=1}^{n} f''(\xi_{i})}{12n^{2}}$$

where for each i, ξ_i is a point somewhere in the domain , $\left[a+(i-1)h,a+ih\right]$.

The term $\sum_{i=1}^{n} f''(\xi_i)$ can be viewed as an approximate average value of f''(x) in [a,b].

This leads us to say that the true error, E_t previously defined can be approximated as

$$E_t \cong \alpha \frac{1}{n^2}$$

Table 1 shows the results obtained for the integral using multiple segment Trapezoidal rule for

$$x = \int_{8}^{30} \left(2000 \ln \left[\frac{140000}{140000 - 2100t} \right] - 9.8t \right) dt$$

n	Value	E _t	$ \epsilon_t $ %	$ \epsilon_a \%$
1	11868	807	7.296	
2	11266	205	1.854	5.343
3	11153	91.4	0.8265	1.019
4	11113	51.5	0.4655	0.3594
5	11094	33.0	0.2981	0.1669
6	11084	22.9	0.2070	0.09082
7	11078	16.8	0.1521	0.05482
8	11074	12.9	0.1165	0.03560

Table 1: Multiple Segment Trapezoidal Rule Values

The true error gets approximately quartered as the number of segments is doubled. This information is used to get a better approximation of the integral, and is the basis of Richardson's extrapolation.

Richardson's Extrapolation for Trapezoidal Rule

The true error, E_t in the *n*-segment Trapezoidal rule is estimated as

$$E_t \approx \frac{C}{n^2}$$

where C is an approximate constant of proportionality. Since

$$E_t = TV - I_n$$

Where TV = true value and I_n = approx. value

Richardson's Extrapolation for Trapezoidal Rule

From the previous development, it can be shown that

$$\frac{C}{(2n)^2} \approx TV - I_{2n}$$

when the segment size is doubled and that

$$TV \approx I_{2n} + \frac{I_{2n} - I_n}{3}$$

which is Richardson's Extrapolation.

Example 1

Human vision has the remarkable ability to infer 3D shapes from 2D images. The intriguing question is: can we replicate some of these abilities on a computer? Yes, it can be done and to do this, integration of vector fields is required. The following integral needs to integrated.

$$I = \int_{0}^{100} f(x)dx \text{ where } f(x) = 0, \ 0 < x < 30$$

$$= -9.1688 \times 10^{-6} x^{3} + 2.7961 \times 10^{-3} x^{2}$$

$$-2.8487 \times 10^{-1} x + 9.6778, 30 \le x \le 172$$

$$= 0, \ 172 < x < 200$$

- a) Use Richardson's rule to find the distance covered. Use the 2-segment and 4-segment Trapezoidal rule results given in Table 1.
- b) Find the true error, E_t for part (a).
- c) Find the absolute relative true error, $|\epsilon_a|$ for part (a).

Solution

Table 2 Values obtained for Trapezoidal rule.

a)

n	Trapezoidal Rule		
1	-0.85000		
$\frac{1}{2}$	63.493		
1	36.062		
0			
8	55.753		

$$I_2 = 63.493$$

$$I_{4} = 36.062$$

Using Richardson's extrapolation formula for Trapezoidal rule

$$TV \approx I_{2n} + \frac{I_{2n} - I_n}{3}$$
 and choosing $n=2$,
$$TV \approx I_4 + \frac{I_4 - I_2}{3} = 36.062 + \frac{36.062 - 63.493}{3} = 26.917$$

b) The exact value of the above integral is found using Maple for calculating the true error and relative true error.

$$I = \int_{0}^{100} f(x)dx$$
$$= 60.793$$

Hence

$$E_t = True\ Value - Approximate\ Value$$

$$= 60.793 - 26.918$$

$$= 33.876$$

c) The absolute relative true error $|\epsilon_t|$ would then be

$$\left| \in_{t} \right| = \left| \frac{60.793 - 26.918}{60.793} \right| \times 100$$

$$= 55.724\%$$

Table 2 shows the Richardson's extrapolation results using 1, 2, 4, 8 segments. Results are compared with those of Trapezoidal rule.

Table 2 The values obtained using Richardson's extrapolation formula for Trapezoidal rule for

$$f(x) = 0, \ 0 < x < 30$$

= $-9.1688 \times 10^{-6} x^3 + 2.7961 \times 10^{-3} x^2 - 2.8487 \times 10^{-1} x + 9.6778, \ 30 \le x \le 172$
= $0, \ 172 < x < 200$

n	Trapezoidal Rule	$\left \in_{t} \right $ for Trapezoidal Rule	Richardson's Extrapolation	$\left \in_{t} \right $ for Richardson's Extrapolation
1	-0.85000	101.40		
2	63.498	4.4494	84.947	39.733
4	36.062	40.681	26.917	55.724
8	55.754	8.2885	62.318	2.5092

Table 2: Richardson's Extrapolation Values

Romberg integration is same as Richardson's extrapolation formula as given previously. However, Romberg used a recursive algorithm for the extrapolation. Recall

$$TV \approx I_{2n} + \frac{I_{2n} - I_n}{3}$$

This can alternately be written as

$$(I_{2n})_R = I_{2n} + \frac{I_{2n} - I_n}{3} = I_{2n} + \frac{I_{2n} - I_n}{4^{2-1} - 1}$$

Note that the variable TV is replaced by $(I_{2n})_R$ as the value obtained using Richardson's extrapolation formula. Note also that the sign \approx is replaced by = sign. Hence the estimate of the true value now is

$$TV \approx (I_{2n})_R + Ch^4$$

Where Ch⁴ is an approximation of the true error.

Determine another integral value with further halving the step size (doubling the number of segments),

$$(I_{4n})_R = I_{4n} + \frac{I_{4n} - I_{2n}}{3}$$

It follows from the two previous expressions that the true value TV can be written as

$$TV \approx (I_{4n})_R + \frac{(I_{4n})_R - (I_{2n})_R}{15}$$

$$= I_{4n} + \frac{(I_{4n})_R - (I_{2n})_R}{4^{3-1} - 1}$$

A general expression for Romberg integration can be written as

$$I_{k,j} = I_{k-1,j+1} + \frac{I_{k-1,j+1} - I_{k-1,j}}{4^{k-1} - 1}, k \ge 2$$

The index k represents the order of extrapolation. k=1 represents the values obtained from the regular Trapezoidal rule, k=2 represents values obtained using the true estimate as $O(h^2)$. The index j represents the more and less accurate estimate of the integral.

Example 2

Human vision has the remarkable ability to infer 3D shapes from 2D images. The intriguing question is: can we replicate some of these abilities on a computer? Yes, it can be done and to do this, integration of vector fields is required. The following integral needs to integrated.

where
$$I = \int_{0}^{100} f(x)dx$$
 where
$$f(x) = 0, \ 0 < x < 30$$

$$= -9.1688 \times 10^{-6} x^{3} + 2.7961 \times 10^{-3} x^{2} - 2.8487 \times 10^{-1} x + 9.6778,$$

$$30 \le x \le 172$$

$$= 0, \ 172 < x < 200$$

Use Romberg's rule to find the distance covered. Use the 1, 2, 4, and 8-segment Trapezoidal rule results as given in the Table 1.

Solution

From Table 1, the needed values from original Trapezoidal rule are

$$I_{1.1} = -0.85000$$
 $I_{1.2} = 63.498$

$$I_{1,3} = 36.062$$
 $I_{1,4} = 55.754$

where the above four values correspond to using 1, 2, 4 and 8 segment Trapezoidal rule, respectively.

To get the first order extrapolation values,

$$I_{2,1} = I_{1,2} + \frac{I_{1,2} - I_{1,1}}{3}$$

$$= 63.498 + \frac{63.498 - (-0.85000)}{3}$$

$$= 84.947$$

Similarly,

$$I_{2,2} = I_{1,3} + \frac{I_{1,3} - I_{1,2}}{3}$$

$$= 36.062 + \frac{36.062 - 63.498}{3}$$

$$= 26.917$$

$$I_{2,3} = I_{1,4} + \frac{I_{1,4} - I_{1,3}}{3}$$
$$= 55.754 + \frac{55.754 - 36.062}{3}$$
$$= 62.318$$

For the second order extrapolation values,

$$I_{3,1} = I_{2,2} + \frac{I_{2,2} - I_{2,1}}{15}$$

$$= 26.917 + \frac{26.917 - 84.947}{15}$$

$$= 23.048$$

Similarly,

$$I_{3,2} = I_{2,3} + \frac{I_{2,3} - I_{2,2}}{15}$$

$$= 62.318 + \frac{62.318 - 26.917}{15}$$

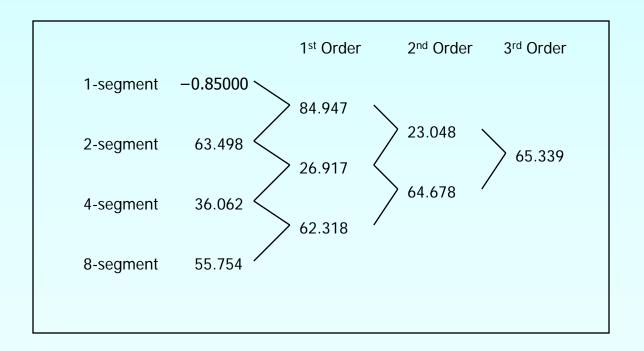
$$= 64.678$$

For the third order extrapolation values,

$$I_{4,1} = I_{3,2} + \frac{I_{3,2} - I_{3,1}}{63}$$
$$= 64.678 + \frac{64.678 - 23.048}{63}$$
$$= 65.339$$

Table 3 shows these increased correct values in a tree graph.

Table 3: Improved estimates of the integral value using Romberg Integration



Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

<u>http://numericalmethods.eng.usf.edu/topics/romberg_method.html</u>

THE END

http://numericalmethods.eng.usf.edu