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Chapter 05.05
Spline Method of Interpolation
After reading this chapter, you should be able to:
1. interpolate data using spline interpolation, and
2. understand why spline interpolation is important.
What is interpolation?

Many times, data is given only at discrete points such as 
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.  So, how then does one find the value of 
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?  Well, a continuous function 
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 points (Figure 1).  Then one can find the value of 
[image: image12.wmf]y

 at any other value of 
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.  This is called interpolation.  

Of course, if 
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 falls outside the range of 
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 for which the data is given, it is no longer interpolation but instead is called extrapolation.  


So what kind of function 
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 should one choose?  A polynomial is a common choice for an interpolating function because polynomials are easy to 

(A) evaluate,
(B) differentiate, and

(C) integrate

relative to other choices such as a trigonometric and exponential series. 


Polynomial interpolation involves finding a polynomial of order 
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 that passes through the 
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 points.  Several methods to obtain such a polynomial include the direct method, Newton’s divided difference polynomial method and the Lagrangian interpolation method.  

So is the spline method yet another method of obtaining this 
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 order polynomial. …… NO!  Actually, when 
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 becomes large, in many cases, one may get oscillatory behavior in the resulting polynomial.  This was shown by Runge when he interpolated data based on a simple function of
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on an interval of [–1, 1].  For example, take six equidistantly spaced points in [–1, 1] and find 
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 at these points as given in Table 1.

	


	 SHAPE  \* MERGEFORMAT 




	        Figure 1   Interpolation of discrete data.


Table 1  Six equidistantly spaced points in [–1, 1].
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	–1.0
	0.038461

	–0.6
	0.1

	–0.2
	0.5

	0.2
	0.5

	0.6
	0.1

	1.0
	0.038461



Now through these six points, one can pass a fifth order polynomial
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through the six data points.  On plotting the fifth order polynomial (Figure 2) and the original function, one can see that the two do not match well.  One may consider choosing more points in the interval [–1, 1] to get a better match, but it diverges even more (see Figure 3), where 20 equidistant points were chosen in the interval [–1, 1] to draw a 19th order polynomial.  In fact, Runge found that as the order of the polynomial becomes infinite, the polynomial diverges in the interval of 
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So what is the answer to using information from more data points, but at the same time keeping the function true to the data behavior?  The answer is in spline interpolation.  The most common spline interpolations used are linear, quadratic, and cubic splines.
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	Figure 2   5th order polynomial interpolation with six equidistant points.
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	Figure 3   Higher order polynomial interpolation is a bad idea.


Linear Spline Interpolation 

Given 
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, fit linear splines (Figure 4) to the data.  This simply involves forming the consecutive data through straight lines.  So if the above data is given in an ascending order, the linear splines are given by 
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Note the terms of
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in the above function are simply slopes between 
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Example 1

Thermistors are used to measure the temperature of bodies. Thermistors are based on materials’ change in resistance with temperature. To measure temperature, manufacturers provide you with a temperature vs. resistance calibration curve. If you measure resistance, you can find the temperature. A manufacturer of thermistors makes several observations with a thermistor, which are given in Table 2.

Table 2  Temperature as a function of resistance.

	
[image: image44.wmf]R



 EMBED Equation.3 [image: image45.wmf](

)

ohm


	
[image: image46.wmf]T



 EMBED Equation.3 [image: image47.wmf](

)

C

°



	1101.0

911.3

636.0

451.1
	25.113

30.131

40.120

50.128


	[image: image48.png]Temperature (°C)
w w & s o o
8 5 &5 & g 4

o
b5

~
3

Temperature vs. Resistance

400

500

600 700 800 900
Resistance (ohms)

1000

1100

1200






	Figure 5  Resistance vs. temperature.


Determine the temperature corresponding to 754.8 ohms using linear splines.

Solution

Since we want to find the temperature at 
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Linear spline interpolation is no different from linear polynomial interpolation. Linear splines still use data only from the two consecutive data points. Also at the interior points of the data, the slope changes abruptly. This means that the first derivative is not continuous at these points. So how do we improve on this? We can do so by using quadratic splines.

Quadratic Splines
In these splines, a quadratic polynomial approximates the data between two consecutive data points.  Given 
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, fit quadratic splines through the data.  The splines are given by
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So how does one find the coefficients of these quadratic splines?  There are 
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To find 
[image: image75.wmf]n

3

 unknowns, one needs to set up 
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 equations and then simultaneously solve them.  These 
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 equations are found as follows.

1. Each quadratic spline goes through two consecutive data points
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This condition gives 
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 equations as there are 
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 quadratic splines going through two consecutive data points.
2. The first derivatives of two quadratic splines are continuous at the interior points.  For example, the derivative of the first spline
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The derivative of the second spline
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and the two are equal at 
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Similarly at the other interior points,
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Since there are 
[image: image96.wmf])

1

(

-

n

 interior points, we have 
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 such equations.  So far, the total number of equations is 
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 equations.  We still then need one more equation.
We can assume that the first spline is linear, that is
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This gives us 
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 equations and 
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 unknowns.  These can be solved by a number of techniques used to solve simultaneous linear equations.

Example 2

Thermistors are used to measure the temperature of bodies. Thermistors are based on materials’ change in resistance with temperature. To measure temperature, manufacturers provide you with a temperature vs. resistance calibration curve. If you measure resistance, you can find the temperature. A manufacturer of thermistors makes several observations with a thermistor, which are given in Table 3. 

Table 3  Temperature as a function of resistance.
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a) Determine the temperature corresponding to 754.8 ohms using quadratic splines.  Find the absolute relative approximate error for the quadratic approximation.

b) The actual calibration curve used by industry is given by
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substituting 
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the calibration curve is given by
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Table 3  Manipulation for the given data.
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Find the calibration curve using quadratic splines, and find the temperature corresponding to 754.8 ohms. What is the difference between the results from part (a)? Is the difference larger using the results from part (a) or part (b), if the actual measured value at 754.8 ohms is 35.285
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Solution

a) Since there are four data points, three quadratic splines pass through them.
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The equations are found as follows. 

1. Each quadratic spline passes through two consecutive data points.
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2. Quadratic splines have continuous derivatives at the interior data points.
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3.  Assuming the first spline 
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Solving the above 9 equations gives the 9 unknowns as
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Therefore, the splines are given by
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The absolute relative approximate error 
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b) Since there are four data points, three quadratic splines pass through them.
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The equations are found as follows.

1. Each quadratic spline passes through two consecutive data points.
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2. Quadratic splines have continuous derivatives at the interior data points.
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3. Assuming the first spline 
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Solving the above 9 equations gives the 9 unknowns as
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Therefore, the splines are given by
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Since the actual measured value at 754.8 ohms is 35.285
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 the absolute relative true error between the value used for part (a) is
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and for part (b) is
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Therefore, the spline method of interpolation using quadratic splines, that is,
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obtained more accurate results than the calibration curve of
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