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Chapter 05.02
Direct Method of Interpolation
After reading this chapter, you should be able to:
1. apply the direct method of interpolation,

2. solve problems using the direct method of interpolation, and
3. use the direct method interpolants to find derivatives and integrals of discrete functions.
What is interpolation?

Many times, data is given only at discrete points such as 
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.  So, how then does one find the value of 
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 points (Figure 1).  Then one can find the value of 
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 at any other value of 
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.  This is called interpolation.  

Of course, if 
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 falls outside the range of 
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 for which the data is given, it is no longer interpolation but instead is called extrapolation.  


So what kind of function 
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 should one choose?  A polynomial is a common choice for an interpolating function because polynomials are easy to 

(A) evaluate,
(B) differentiate, and

(C) integrate

relative to other choices such as a trigonometric and exponential series. 


Polynomial interpolation involves finding a polynomial of order 
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 that passes through the 
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 points.  One of the methods of interpolation is called the direct method.  Other methods include Newton’s divided difference polynomial method and the Lagrangian interpolation method.  We will discuss the direct method in this chapter.
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	        Figure 1   Interpolation of discrete data.


Direct Method

The direct method of interpolation is based on the following premise.  Given 
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 data points, fit a polynomial of order 
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through the data, where 
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 can be found by solving the 
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 at a given value of 
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, simply substitute the value of 
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But, it is not necessary to use all the data points.  How does one then choose the order of the polynomial and what data points to use?  This concept and the direct method of interpolation are best illustrated using examples.
Example 1
The upward velocity of a rocket is given as a function of time in Table 1.

Table 1  Velocity as a function of time.
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	227.04

	15
	362.78
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	517.35

	22.5
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	Figure 2   Graph of velocity vs. time data for the rocket example.


Determine the value of the velocity at 
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=

t

 seconds using the direct method of interpolation and a first order polynomial.

Solution

For first order polynomial interpolation (also called linear interpolation), the velocity given by
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	         Figure 3   Linear interpolation.


Since we want to find the velocity at 
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, and we are using a first order polynomial, we need to choose the two data points that are closest to 
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Writing the equations in matrix form, we have
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Solving the above two equations gives
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Example 2

The upward velocity of a rocket is given as a function of time in Table 2.
     Table 2   Velocity as a function of time.
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Determine the value of the velocity at 
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 seconds using the direct method of interpolation and a second order polynomial.

Solution
For second order polynomial interpolation (also called quadratic interpolation), the velocity is given by
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	        Figure 4   Quadratic interpolation.


Since we want to find the velocity at 
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, and we are using a second order polynomial, we need to choose the three data points that are closest to 
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Writing the three equations in matrix form, we have
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Solving the above three equations gives
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The absolute relative approximate error 
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 obtained between the results from the first and second order polynomial is
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Example 3

The upward velocity of a rocket is given as a function of time in Table 3.
    Table 3   Velocity as a function of time.
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a) Determine the value of the velocity at 
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 seconds using the direct method of interpolation and a third order polynomial. 
b) Find the absolute relative approximate error for the third order polynomial approximation.

c) Using the third order polynomial interpolant for velocity from part (a), find the distance covered by the rocket from 
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d) Using the third order polynomial interpolant for velocity from part (a), find the acceleration of the rocket at 
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Solution

a) For third order polynomial interpolation (also called cubic interpolation), we choose the velocity given by
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	        Figure 5   Cubic interpolation.


Since we want to find the velocity at 
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, and we are using a third order polynomial, we need to choose the four data points closest to 
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The four points are 
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Writing the four equations in matrix form, we have
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Solving the above four equations gives
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b) The absolute percentage relative approximate error 
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c) The distance covered by the rocket between 
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 can be calculated from the interpolating polynomial
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Note that the polynomial is valid between 
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d) The acceleration at 
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