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Chapter 08.02 
Euler’s Method for Ordinary Differential Equations

After reading this chapter, you should be able to:
1. develop Euler’s Method for solving ordinary differential equations,

2. determine how the step size affects the accuracy of a solution,

3. derive Euler’s formula from Taylor series, and
4. use Euler’s method to find approximate values of integrals.
What is Euler’s method?

Euler’s method is a numerical technique to solve ordinary differential equations of the form
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So only first order ordinary differential equations can be solved by using Euler’s method.  In another chapter we will discuss how Euler’s method is used to solve higher order ordinary differential equations or coupled (simultaneous) differential equations.  How does one write a first order differential equation in the above form?

Example 1 

Rewrite
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Solution
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In this case
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Example 2

Rewrite
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Solution
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In this case
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Derivation of Euler’s method
At 
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	Figure 1  Graphical interpretation of the first step of Euler’s method.


So the slope at 
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From here
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Calling 
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the step size
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One can now use the value of 
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Based on the above equations, if we now know the value of 
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This formula is known as Euler’s method and is illustrated graphically in Figure 2.  In some books, it is also called the Euler-Cauchy method.
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	Figure 2 General graphical interpretation of Euler’s method. 


Example 3
A ball at 
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 is allowed to cool down in air at an ambient temperature of 
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300

.  Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by 
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where 
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Solution
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Per Equation (3), Euler’s method reduces to
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Figure 3 compares the exact solution with the numerical solution from Euler’s method for the step size of 
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	Figure 3  Comparing the exact solution and Euler’s method.


[image: image141.wmf]1

x

The problem was solved again using a smaller step size.  The results are given below in Table 1.

                     Table 1  Temperature at 480 seconds as a function of step size, 
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Figure 4 shows how the temperature varies as a function of time for different step sizes.
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	Figure 4  Comparison of Euler’s method with the exact solution
 for different step sizes.


The values of the calculated temperature at 
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s as a function of step size are plotted in Figure 5.
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	              Figure 5  Effect of step size in Euler’s method.


The exact solution of the ordinary differential equation is given by the solution of a non-linear equation as
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The solution to this nonlinear equation is
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It can be seen that Euler’s method has large errors.  This can be illustrated using the Taylor series.
     
[image: image93.wmf](

)

(

)

(

)

...

!

3

1

!

2

1

3

1

,

3

3

2

1

,

2

2

1

,

1

+

-

+

-

+

-

+

=

+

+

+

+

i

i

y

x

i

i

y

x

i

i

y

x

i

i

x

x

dx

y

d

x

x

dx

y

d

x

x

dx

dy

y

y

i

i

i

i

i

i

             (5)


[image: image94.wmf](

)

(

)

...

)

,

(

'

'

!

3

1

)

,

(

'

!

2

1

)

)(

,

(

3

1

2

1

1

+

-

+

-

+

-

+

=

+

+

+

i

i

i

i

i

i

i

i

i

i

i

i

i

x

x

y

x

f

x

x

y

x

f

x

x

y

x

f

y

     (6)

As you can see the first two terms of the Taylor series
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are Euler’s method.

The true error in the approximation is given by
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The true error hence is approximately proportional to the square of the step size, that is, as the step size is halved, the true error gets approximately quartered.  However from Table 1, we see that as the step size gets halved, the true error only gets approximately halved.  This is because the true error, being proportioned to the square of the step size, is the local truncation error, that is, error from one point to the next.  The global truncation error is however proportional only to the step size as the error keeps propagating from one point to another.

Can one solve a definite integral using numerical methods such as Euler’s method of solving ordinary differential equations?

Let us suppose you want to find the integral of a function 
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Both fundamental theorems of calculus would be used to set up the problem so as to solve it as an ordinary differential equation.

The first fundamental theorem of calculus states that if 
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The second fundamental theorem of calculus states that if 
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Asked to find
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, we can rewrite the integral as the solution of an ordinary differential equation (here is where we are using the second fundamental theorem of calculus)
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Example 4

Find an approximate value of 
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Solution

Given 
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The Euler’s method equation is
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Step 1 
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