Industrial Engineering Majors

Authors: Autar Kaw

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Holistic Numerical

Methods Institute

An *iterative* method.

Basic Procedure:

-Algebraically solve each linear equation for x_i

-Assume an initial guess solution array

-Solve for each x_i and repeat

-Use absolute relative approximate error after each iteration to check if error is within a pre-specified tolerance.

The Gauss-Seidel Method allows the user to control round-off error.

Elimination methods such as Gaussian Elimination and LU Decomposition are prone to prone to round-off error.

Also: If the physics of the problem are understood, a close initial guess can be made, decreasing the number of iterations needed.

Gauss-Seidel Method Algorithm

A set of *n* equations and *n* unknowns:

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

 $a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$

If: the diagonal elements are non-zero

Rewrite each equation solving for the corresponding unknown

ex:

First equation, solve for x_1

Second equation, solve for x_2

Algorithm

General Form for any row 'i'

$$c_{i} - \sum_{\substack{j=1 \ j \neq i}}^{n} a_{ij} x_{j}$$
$$x_{i} = \frac{a_{ii}}{a_{ii}}, i = 1, 2, \dots, n.$$

How or where can this equation be used?

Solve for the unknowns

Assume an initial guess for [X]

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}$$

Use rewritten equations to solve for each value of x_i .

Important: Remember to use the most recent value of x_i . Which means to apply values calculated to the calculations remaining in the **current** iteration.

Calculate the Absolute Relative Approximate Error

$$\left| \in_{a} \right|_{i} = \left| \frac{x_{i}^{new} - x_{i}^{old}}{x_{i}^{new}} \right| \times 100$$

So when has the answer been found?

The iterations are stopped when the absolute relative approximate error is less than a prespecified tolerance for all unknowns.

To find the number of toys a company should manufacture per day to optimally use their injection-molding machine and the assembly line, one needs to solve the following set of equations. The unknowns are the number of toys for boys, x_{1} , number of toys for girls, x_{2} , and the number of unisexual toys, x_{3} .

0.3333	0.1667	0.6667	$\begin{bmatrix} x_1 \end{bmatrix}$		756
0.1667	0.6667	0.3333	<i>x</i> ₂	_	1260
1.05	-1.00	0.00	$\lfloor x_3 \rfloor$		0

Find the values of x_1 , x_2 , and x_3 using the Gauss-Seidel Method

of $\begin{bmatrix} 0.3333 & 0.1667 & 0.6667 \\ 0.1667 & 0.6667 & 0.3333 \\ 1.05 & -1.00 & 0.00 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 756 \\ 1260 \\ 0 \end{bmatrix}$

Initial Guess: Assume an initial guess of

The system of

equations is:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1000 \\ 1000 \\ 100 \end{bmatrix}$$

Rewriting each equation

 $\begin{bmatrix} 0.3333 & 0.1667 & 0.6667 \\ 0.1667 & 0.6667 & 0.3333 \\ 1.05 & -1.00 & 0.00 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 756 \\ 1260 \\ 0 \end{bmatrix}$

$$x_1 = \frac{756 - 0.1667x_2 - 0.6667x_3}{0.3333}$$

$$x_2 = \frac{1260 - 0.1667x_1 - 0.3333x_3}{0.6667}$$

$$x_3 = \frac{0 - 1.05x_1 - (-1.00)x_2}{0}$$

$$x_3 = \frac{0 - 1.05x_1 - (-1.00)x_2}{0}$$

The Equation for x_3 is divided by 0 which is undefined. Therefore the order of the equations will need to be reordered. Equation 3 and equation 1 will be switched. By switching equations 3 and 1, the matrix will also become diagonally dominant.

The system of equations becomes:

$$\begin{bmatrix} 1.05 & -1.00 & 0.00 \\ 0.1667 & 0.6667 & 0.3333 \\ 0.3333 & 0.1667 & 0.6667 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1260 \\ 756 \end{bmatrix}$$

Rewriting each equation

$$\begin{bmatrix} 1.05 & -1.00 & 0.00 \\ 0.1667 & 0.6667 & 0.3333 \\ 0.3333 & 0.1667 & 0.6667 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1260 \\ 756 \end{bmatrix}$$

$$x_1 = \frac{0 - (-1.00)x_2 - (0)x_3}{1.05}$$

$$x_2 = \frac{1260 - 0.1667 x_1 - 0.3333 x_3}{0.6667}$$

$$x_3 = \frac{756 - 0.3333x_1 - 0.1667x_2}{0.6667}$$

Example: Production Optimization Applying the initial guess and solving for x_i

When solving for x_2 , how many of the initial guess values were used?

Finding the absolute relative approximate error

 $\left|\epsilon_{a}\right|_{i} = \left|\frac{x_{i}^{new} - x_{i}^{old}}{x_{i}^{new}}\right| \times 100$

At the end of the first iteration

$$\left|\epsilon_{a}\right|_{1} = \left|\frac{952.38 - 1000}{952.38}\right| \times 100 = 5.0000\%$$

$$\left|\epsilon_{a}\right|_{2} = \left|\frac{1601.8 - 1000}{1601.8}\right| \times 100 = 37.570\%$$

$$\left|\epsilon_{a}\right|_{3} = \left|\frac{257.32 - 100}{257.32}\right| \times 100 = 61.138\%$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 952.38 \\ 1601.8 \\ 257.32 \end{bmatrix}$$

The maximum absolute relative approximate error is 61.138%

Example: Production Optimization Iteration 2 Using $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 952.38 \\ 1601.8 \\ 257.32 \end{bmatrix}$ from Iteration 1, the values of x_i are found: $x_1 = \frac{0 - (-1.00) \times 1601.8 - 0 \times 257.32}{1.05} = 1525.5$

$$x_2 = \frac{1260 - 0.1667 \times 1525.5 - 0.3333 \times 257.32}{0.6667} = 1379.8$$

$$x_3 = \frac{756 - 0.3333 \times 1525.5 - 0.1667 \times 1379.8}{0.6667} = 26.295$$

Finding the absolute relative approximate error

$$\left| \in_{a} \right|_{1} = \left| \frac{1525.5 - 952.38}{1525.5} \right| \times 100 = 37.570\%$$

$$\left|\epsilon_{a}\right|_{2} = \left|\frac{1379.8 - 1601.8}{1379.8}\right| \times 100 = 16.085\%$$

$$\left|\epsilon_{a}\right|_{3} = \left|\frac{26.295 - 257.32}{26.295}\right| \times 100 = 878.59\%$$

At the end of the second iteration

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1525.5 \\ 1379.8 \\ 26.295 \end{bmatrix}$$

The maximum absolute relative approximate error is 878.59%

Repeating more iterations, the following values are obtained

Iteration	x ₁	$\left \in_{a} \right _{1} \%$	x ₂	$\left \epsilon_{a}\right _{2}$ %	x ₃	$\left \epsilon_{a}\right _{3}\%$
1	952.38	5	1601.8	37.570	257.32	61.138
2	1525.5	37.570	1379.8	16.085	26.295	878.59
3	1314.1	16.085	1548.2	10.874	89.876	70.743
4	1474.5	10.874	1476.3	4.8686	27.694	224.53
5	1406.0	4.8686	1524.5	3.1618	49.863	44.459
6	1451.9	3.1618	1501.9	1.5021	32.554	53.170

! Notice – After six iterations, the absolute relative approximate errors are decreasing, but are still high.

Repeating more iterations, the following values are obtained

Iteration	x ₁	$\left \in_{a} \right _{1} \%$	x ₂	$\left \in_{a} \right _{2} \%$	x ₃	$\left \in_{a} \right _{3} \%$
20	1439.8	0.00064276	1511.8	0.00034987	36.115	0.0091495
21	1439.8	0.00034987	1511.8	0.00019257	36.114	0.0049578

The value of $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1439.8 \\ 1511.8 \\ 36.114 \end{bmatrix}$ closely approaches the true value of $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1439.8 \\ 1511.8 \\ 36.113 \end{bmatrix}$

Gauss-Seidel Method: Pitfall

Even though done correctly, the answer may not converge to the correct answer

This is a pitfall of the Gauss-Siedel method: not all systems of equations will converge.

Is there a fix?

One class of system of equations always converges: One with a *diagonally dominant* coefficient matrix.

Diagonally dominant: [A] in [A] [X] = [C] is diagonally dominant if:

$$|a_{ii}| \ge \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \quad \text{for all 'i'} \qquad \text{and } |a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \text{ for at least one 'i'}$$

Gauss-Seidel Method: Pitfall

Diagonally dominant: The coefficient on the diagonal must be at least equal to the sum of the other coefficients in that row and at least one row with a diagonal coefficient greater than the sum of the other coefficients in that row.

Which coefficient matrix is diagonally dominant?

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 2 & 5.81 & 34 \\ 45 & 43 & 1 \\ 123 & 16 & 1 \end{bmatrix} \qquad \begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 124 & 34 & 56 \\ 23 & 53 & 5 \\ 96 & 34 & 129 \end{bmatrix}$$

Most physical systems do result in simultaneous linear equations that have diagonally dominant coefficient matrices.

Given the system of equations

$$12x_{1} + 3x_{2} - 5x_{3} = 1$$

$$x_{1} + 5x_{2} + 3x_{3} = 28$$

$$3x_{1} + 7x_{2} + 13x_{3} = 76$$

The coefficient matrix is:

	12	3	-5]
[A] =	1	5	3
	3	7	13

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Will the solution converge using the Gauss-Siedel method?

Checking if the coefficient matrix is diagonally dominant $\begin{bmatrix} a_{11} \\ = \\ 12 \\ 3 \\ 7 \\ 13 \end{bmatrix} = \begin{bmatrix} 12 \\ 3 \\ -5 \\ 1 \\ 3 \\ 7 \\ 13 \end{bmatrix} = \begin{bmatrix} 12 \\ = \\ 12 \\$

The inequalities are all true and at least one row is *strictly* greater than: Therefore: The solution should converge using the Gauss-Siedel Method

The absolute relative approximate error $\left| \in_{a} \right|_{1} = \left| \frac{0.50000 - 1.0000}{0.50000} \right| \times 100 = 100.00\%$

$$\left|\epsilon_{a}\right|_{2} = \left|\frac{4.9000 - 0}{4.9000}\right| \times 100 = 100.00\%$$

$$\left|\epsilon_{a}\right|_{3} = \left|\frac{3.0923 - 1.0000}{3.0923}\right| \times 100 = 67.662\%$$

The maximum absolute relative error after the first iteration is 100%

After Iteration #1

 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.5000 \\ 4.9000 \\ 3.0923 \end{bmatrix}$

Substituting the x values into the equations

$$x_1 = \frac{1 - 3(4.9000) + 5(3.0923)}{12} = 0.14679$$

$$x_2 = \frac{28 - (0.14679) - 3(3.0923)}{5} = 3.7153$$

$$x_3 = \frac{76 - 3(0.14679) - 7(4.900)}{13} = 3.8118$$

After Iteration #2

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.14679 \\ 3.7153 \\ 3.8118 \end{bmatrix}$$

Iteration #2 absolute relative approximate error

$$\begin{split} |\epsilon_{a}|_{1} &= \left| \frac{0.14679 - 0.50000}{0.14679} \right| \times 100 = 240.61\% \\ |\epsilon_{a}|_{2} &= \left| \frac{3.7153 - 4.9000}{3.7153} \right| \times 100 = 31.889\% \\ |\epsilon_{a}|_{3} &= \left| \frac{3.8118 - 3.0923}{3.8118} \right| \times 100 = 18.874\% \end{split}$$

The maximum absolute relative error after the first iteration is 240.61%

This is much larger than the maximum absolute relative error obtained in iteration #1. Is this a problem?

Repeating more iterations, the following values are obtained

Iteration	<i>a</i> ₁	$\left \epsilon_{a}\right _{1}\%$	<i>a</i> ₂	$\left \epsilon_{a}\right _{2}$ %	<i>a</i> ₃	$\left \epsilon_{a}\right _{3}\%$
1	0.50000	100.00	4.9000	100.00	3.0923	67.662
2	0.14679	240.61	3.7153	31.889	3.8118	18.876
3	0.74275	80.236	3.1644	17.408	3.9708	4.0042
4	0.94675	21.546	3.0281	4.4996	3.9971	0.65772
5	0.99177	4.5391	3.0034	0.82499	4.0001	0.074383
6	0.99919	0.74307	3.0001	0.10856	4.0001	0.00101

The solution obtained
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.99919 \\ 3.0001 \\ 4.0001 \end{bmatrix}$$
 is close to the exact solution of $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$

Given the system of equations

- $3x_1 + 7x_2 + 13x_3 = 76$
 - $x_1 + 5x_2 + 3x_3 = 28$
- $12x_1 + 3x_2 5x_3 = 1$

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Rewriting the equations

$$x_{1} = \frac{76 - 7x_{2} - 13x_{3}}{3}$$
$$x_{2} = \frac{28 - x_{1} - 3x_{3}}{5}$$
$$x_{3} = \frac{1 - 12x_{1} - 3x_{2}}{-5}$$

Conducting six iterations, the following values are obtained

Iteration	<i>a</i> ₁	$\left\ \in_{a} \right\ _{1} \%$	A ₂	$\left \epsilon_{a}\right _{2}\%$	<i>a</i> ₃	$\left \epsilon_{a}\right _{3}\%$
1	21.000	95.238	0.80000	100.00	50.680	98.027
2	-196.15	110.71	14.421	94.453	-462.30	110.96
3	-1995.0	109.83	-116.02	112.43	4718.1	109.80
4	-20149	109.90	1204.6	109.63	-47636	109.90
5	$2.0364 \ 10^5$	109.89	-12140	109.92	$4.8144 \ 10^5$	109.89
6	$-2.0579 \ 10^5$	109.89	$1.2272 \ 10^5$	109.89	$-4.8653 \ 10^{6}$	109.89

The values are not converging.

Does this mean that the Gauss-Seidel method cannot be used?

The Gauss-Seidel Method can still be used

The coefficient matrix is not diagonally dominant

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 3 & 7 & 13 \\ 1 & 5 & 3 \\ 12 & 3 & -5 \end{bmatrix}$$
$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

But this is the same set of equations used in example #2, which did converge.

If a system of linear equations is not diagonally dominant, check to see if rearranging the equations can form a diagonally dominant matrix.

Not every system of equations can be rearranged to have a diagonally dominant coefficient matrix.

Observe the set of equations

$$x_1 + x_2 + x_3 = 3$$

$$2x_1 + 3x_2 + 4x_3 = 9$$

$$x_1 + 7x_2 + x_3 = 9$$

Which equation(s) prevents this set of equation from having a diagonally dominant coefficient matrix?

Gauss-Seidel Method Summary

- -Advantages of the Gauss-Seidel Method
- -Algorithm for the Gauss-Seidel Method
- -Pitfalls of the Gauss-Seidel Method

Questions?

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/gauss_seid el.html

THE END