#### **Euler Method**

Mechanical Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

### **Euler Method**

http://numericalmethods.eng.usf.edu

#### Euler's Method

$$\frac{dy}{dx} = f(x, y), y(0) = y_0$$

Slope 
$$= \frac{Rise}{Run}$$
$$= \frac{y_1 - y_0}{x_1 - x_0}$$
$$= f(x_0, y_0)$$

$$y_1 = y_0 + f(x_0, y_0)(x_1 - x_0)$$
  
=  $y_0 + f(x_0, y_0)h$ 



Figure 1 Graphical interpretation of the first step of Euler's method

### Euler's Method

$$y_{i+1} = y_i + f(x_i, y_i)h$$

$$h = x_{i+1} - x_i$$



Figure 2. General graphical interpretation of Euler's method

# How to write Ordinary Differential Equation

How does one write a first order differential equation in the form of

$$\frac{dy}{dx} = f(x, y)$$

#### **Example**

$$\frac{dy}{dx} + 2y = 1.3e^{-x}, y(0) = 5$$

is rewritten as

$$\frac{dy}{dx} = 1.3e^{-x} - 2y, y(0) = 5$$

In this case

$$f(x,y) = 1.3e^{-x} - 2y$$

## Example

A solid steel shaft at room temperature of 27°C is needed to be contracted so that it can be shrunk-fit into a hollow hub. It is placed in a refrigerated chamber that is maintained at -33°C. The rate of change of temperature of the solid shaft  $\theta$  is given by

$$\frac{d\theta}{dt} = -5.33 \times 10^{-6} \left( -3.69 \times 10^{-6} \theta^4 + 2.33 \times 10^{-5} \theta^3 + 1.35 \times 10^{-3} \theta^2 \right) (\theta + 33)$$
$$\theta(0) = 27^{\circ}\text{C}$$

Using Euler's method, find the temperature of the steel shaft after 86400 seconds. Take a step size of h = 43200 seconds.

$$\frac{d\theta}{dt} = -5.33 \times 10^{-6} \left( -3.69 \times 10^{-6} \theta^4 + 2.33 \times 10^{-5} \theta^3 + 1.35 \times 10^{-3} \theta^2 + 5.42 \times 10^{-2} \theta + 5.588 \right) (\theta + 33)$$

$$f(t,\theta) = -5.33 \times 10^{-6} \left( -3.69 \times 10^{-6} \theta^4 + 2.33 \times 10^{-5} \theta^3 + 1.35 \times 10^{-3} \theta^2 + 5.42 \times 10^{-2} \theta + 5.588 \right) (\theta + 33)$$

$$\theta_{i+1} = \theta_i + f(t_i, \theta_i) h$$

#### Solution

Step 1: 
$$i = 0$$
,  $t_0 = 0$ ,  $\theta_0 = 27$ 

$$\theta_{1} = \theta_{0} + f(t_{0}, \theta_{0})h$$

$$= 27 + f(0, 27)43200$$

$$= 27 + \left(-5.33 \times 10^{-6} \left(-3.69 \times 10^{-6} (27)^{4} + 2.33 \times 10^{-5} (27)^{3} + 1.35 \times 10^{-3} (27)^{2} + 5.42 \times 10^{-2} (27) + 5.588\right)(27 + 33)\right) 43200$$

$$= 27 + (-0.0020893)43200$$

$$= -63.258^{\circ}\text{C}$$

$$\theta_1$$
 is the approximate temperature at  $t = t_1 = t_0 + h = 0 + 43200 = 43200 \text{ s}$   $\theta(43200) \approx \theta_1 = -63.258^{\circ}C$ 

#### Solution Cont

**Step 2:** 
$$i = 1$$
,  $t_1 = 43200$ ,  $\theta_1 = -63.258$ 

$$\theta_{2} = \theta_{1} + f(t_{1}, \theta_{1})h$$

$$= -63.258 + f(43200, -63.258)43200$$

$$= -63.258 + \left(-5.33 \times 10^{-6} \left(-3.69 \times 10^{-6} (-63.258)^{4} + 2.33 \times 10^{-5} (-63.258)^{3} + 1.35 \times 10^{-3} (-63.258)^{2} + 5.42 \times 10^{-2} (-63.258) + 5.588\right) (-63.258 + 33) \right) 43200$$

$$= -63.258 + (-0.0092607)43200$$

$$= -463.32^{\circ}C$$

 $\theta_2$  is the approximate temperature at

$$t = t_2 = t_1 + h = 43200 + 43200 = 86400 \text{ s}$$
  
$$\theta(86400) \approx \theta_2 = -463.32^{\circ}C$$

#### Solution Cont

The solution to this nonlinear equation at t=86400s is

$$\theta(86400) = -26.099^{\circ}C$$

## Comparison of Exact and Numerical Solutions



Figure 3. Comparing exact and Euler's method

## Effect of step size

Table 1 Temperature at 86400 seconds as a function of step size, h

| Step size, h | $\theta(86400)$ | $E_t$   | € <sub>t</sub>   % |
|--------------|-----------------|---------|--------------------|
| 86400        | -153.52         | 127.42  | 488.21             |
| 43200        | -463.32         | 437.22  | 1675.2             |
| 21600        | -29.542         | 3.4421  | 14.189             |
| 10800        | -27.795         | 1.6962  | 6.4988             |
| 5400         | -26.958         | 0.85870 | 3.2902             |

## Comparison with exact results



Figure 4 Comparison of Euler's method with exact solution for different step sizes

## Effects of step size on Euler's Method



Figure 5. Effect of step size in Euler's method.

#### Errors in Euler's Method

It can be seen that Euler's method has large errors. This can be illustrated using Taylor series.

$$y_{i+1} = y_i + \frac{dy}{dx}\Big|_{x_i, y_i} (x_{i+1} - x_i) + \frac{1}{2!} \frac{d^2 y}{dx^2}\Big|_{x_i, y_i} (x_{i+1} - x_i)^2 + \frac{1}{3!} \frac{d^3 y}{dx^3}\Big|_{x_i, y_i} (x_{i+1} - x_i)^3 + \dots$$

$$y_{i+1} = y_i + f(x_i, y_i) (x_{i+1} - x_i) + \frac{1}{2!} f'(x_i, y_i) (x_{i+1} - x_i)^2 + \frac{1}{3!} f''(x_i, y_i) (x_{i+1} - x_i)^3 + \dots$$

As you can see the first two terms of the Taylor series

$$y_{i+1} = y_i + f(x_i, y_i)h$$
 are the Euler's method.

The true error in the approximation is given by

$$E_{t} = \frac{f'(x_{i}, y_{i})}{2!}h^{2} + \frac{f''(x_{i}, y_{i})}{3!}h^{3} + \dots \qquad E_{t} \propto h^{2}$$

#### Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/euler\_method.html

## THE END

http://numericalmethods.eng.usf.edu