Ana Catalina Torres, Autar Kaw
 University of South Florida
 United States of America kaw@eng.usf.edu

Introduction

This worksheet demonstrates the use of Mathcad to illustrate Backward Difference Approximation of the first derivative of continuous functions.

Backward Difference Approximation of the first derivative uses a point h behind of the given value of x at which the derivative of $f(x)$ is to be found.

$$
f^{\prime}(x) \approx \frac{f(x)-f(x-h)}{h}
$$

Section 1: Input

The following simulation approximates the first derivative of a function using Backward Difference Approximation. The user inputs are
a) function, $f(x)$
b) point at which the derivative is to be found, $x v$
c) starting step size, h
d) number of times user wants to halve the starting step size, n

The outputs include
a) approximate value of the derivative at the point and given initial step size
b) exact value
c) true error, absolute relative true error, approximate error and absolute relative approximate error, least number of correct significant digits in the solution as a function of step size.

Function $f(x)$

$$
\mathrm{f}(\mathrm{x}):=\exp (2 \cdot \mathrm{x})
$$

Value of x at which $f^{\prime}(x)$ is desired, $x v$

$$
\mathrm{xv}:=4.0
$$

Starting step size, h

$$
\mathrm{h}:=0.2
$$

Number of times starting step size is halved

$$
\mathrm{n}:=12
$$

This is the end of the user section. All the information must be entered before proceeding to the next section.

Section 2: Procedure

The following procedure estimates the solution of first derivate of an equation at a point $x v$.
$f(x)=$ function
$x v=$ value at which the solution is desired
$h=$ starting step size value
n = number of times starting step size is halved
$\operatorname{BDD}(\mathrm{f}, \mathrm{xv}, \mathrm{h}):=\left\{\begin{array}{l}\text { deriv } \leftarrow \frac{(\mathrm{f}(\mathrm{xv})-\mathrm{f}(\mathrm{xv}-\mathrm{h}))}{\mathrm{h}} \\ \text { deriv }\end{array}\right.$

Section 3: Calculation

The exact value EV of the first derivative of the equation:
Given the function

$$
\mathrm{f}(\mathrm{x}) \rightarrow \mathrm{e}^{2 \cdot \mathrm{x}}
$$

First, using the derivative command the solution is found. In the second step, the exact value of the derivative is shown
The solution of the first derivative is

$$
\mathrm{f}^{\prime}(\mathrm{x}):=\left(\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x})\right) \quad \mathrm{f}(\mathrm{x}) \rightarrow 2 \cdot \mathrm{e}^{2 \cdot \mathrm{x}}
$$

The exact solution of the first derivative is

$$
\begin{aligned}
& \mathrm{EV}:=\mathrm{f}^{\prime}(\mathrm{xv}) \\
& \mathrm{EV}=5961.915974
\end{aligned}
$$

The next loop calculates the following:
Av: Approximate value of the first derivative using Backward Difference
Approximation by calling the procedure "BDD"
Ev: Exact value of the first derivative
Et: True error
ε_{t} : Absolute relative true percentage error
Ea: Approximate error
ε_{a} : Absolute relative approximate percentage error
$\mathrm{n}_{\mathrm{sig}}$: Least number of correct significant digits in an approximation

$$
\begin{aligned}
& \text { table }:=\text { for } \mathrm{i} \in 0 . . \mathrm{n}-1 \\
& \qquad \begin{array}{l}
\mathrm{N}_{\mathrm{i}} \leftarrow 2^{\mathrm{i}} \\
\mathrm{H}_{\mathrm{i}} \leftarrow \frac{\mathrm{~h}}{\mathrm{~N}_{\mathrm{i}}} \\
\mathrm{AV}_{\mathrm{i}} \leftarrow \mathrm{BDD}\left(\mathrm{f}, \mathrm{xv}, \mathrm{H}_{\mathrm{i}}\right) \\
\mathrm{E}_{\mathrm{t}_{\mathrm{i}}} \leftarrow \mathrm{EV}-\mathrm{AV}_{\mathrm{i}} \\
\varepsilon_{\mathrm{t}_{\mathrm{i}}} \leftarrow\left|\frac{\mathrm{E}_{\mathrm{t}_{\mathrm{i}}}}{\mathrm{EV}} \cdot 100\right| \\
\mathrm{augment}\left(\mathrm{H}, \mathrm{AV}, \mathrm{E}_{\mathrm{t}}, \varepsilon_{\mathrm{t}}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { table2 }:=\text { for } \mathrm{i} \in 0 . . \mathrm{n}-1
\end{aligned}
$$

The loop halves the value of the starting step size n times. Each time, the approximate value of the derivative is calculated and saved in a vector. The approximate error is calculated after at least two approximate values of the derivative have been saved. The number of significant digits is calculated. If the number of significant digits calculated is less than zero, it is shown as zero.

Section 4: Table of Values

The next tables show the step size value, approximate value, true error, the absolute relative true percentage error, the approximate error, the absolute relative approximate percentage error and the least number of correct significant digits in an approximation as a function of the step size value.

		H	AV	F.	ε
		0	1	2	3
	0	0.2	4913.81	1048.11	17.58
	1	0.1	5403.56	558.36	9.37
	2	0.05	5673.51	288.4	4.84
	3	0.03	5815.32	146.59	2.46
	4	0.01	5888.01	73.91	1.24
table $1=$	5	0.01	5924.81	37.11	0.62
	6	0	5943.32	18.59	0.31
	7	0	5952.61	9.31	0.16
	8	7.81•10-4	5957.26	4.66	0.08
	9	$3.91 \cdot 10^{-4}$	5959.59	2.33	0.04
	10	$1.95 \cdot 10^{-4}$	5960.75	1.16	0.02
	11	$9.77 \cdot 10^{-5}$	5961.33	0.58	0.01

Section 5: Graphs

The following graphs show the approximate solution, absolute relative true error, absolute relative approximate error and least number of significant digits as a function of step size.
x := 0 .. $\mathrm{h}+1$
Approximate Solution of the First Derivative using Backward
Difference Approximation as a Function of Step Size

Absolute Relative True Percentage Error as a
Function of Step Size

References

Numerical Differentiation of Continuous Functions. See
http://numericalmethods.eng.usf.edu/mws/gen/02dif/mws_gen_dif_txt_continuous.pdf

Questions

1. The velocity of a rocket is given by

$$
v(t)=2000 \cdot \ln \frac{140000}{140000-2100 \cdot t}-9.8 \cdot t
$$

Use Backward Divided Difference method with a step size of 0.25 to find the acceleration at $t=5 s$. Compare with the exact answer and study the effect of the step size.
2. Look at the true error vs. step size data for problem \# 1. Do you see a relationship between the value of the true error and step size ? Is this concidential?
3.Choose a step size of $\mathrm{h}=10^{-10}$ in problem \#1. Keep halving the step size. Does the approximate value get closer to the exact result or does the result seem odd?

Conclusions

To obtain more accurate values of the first derivative using Backward Difference Approximation, the step size needs to be small. As the spreadsheet shows, the smaller the step size value is, the approximation is closest to the exact value. However, too small a step size can result in noticeable round-off errors, and hence giving highly inaccurate results.

[^0]
[^0]: Legal Notice: The copyright for this application is owned by the author(s). Neither Mathcad nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application for-profit activities.

