Ana Catalina Torres, Autar Kaw
 University of South Florida
 United States of America
 kaw@eng.usf.edu

Introduction

This worksheet demonstrates the use of Mathcad to illustrate the approximation of the second derivative of continuous functions.

A second derivative approximation uses a point h ahead and a point h behind of the given value of x at which the second derivative of $f(x)$ is to be found.

$$
f^{\prime \prime}(x) \approx \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}+0\left(h^{2}\right)
$$

Section 1: Input

The following simulation approximates the second derivative of a function using second order accurate approximation. The user inputs are
a) function, $f(x)$
b) point at which the derivative is to be found, $x v$
c) starting step size, h
d) number of times user wants to halve the starting step size, n

The outputs include
a) approximate value of the second derivative at the point and initial step size given
b) exact value
c) true error, absolute relative true error, approximate error and absolute relative approximate error, least number of correct significant digits in the solution as a function of step size.

Function $f(x)$

$$
\mathrm{f}(\mathrm{x}):=\exp (2 \cdot \mathrm{x})
$$

Value of x at which $f^{\prime \prime}(x)$ is desired, $x v$

$$
x v:=4.0
$$

Starting step size, h

$$
\mathrm{h}:=0.2
$$

Number of times starting step size is halved

$$
\mathrm{n}:=12
$$

This is the end of the user section. All the information must be entered before proceeding to the next section.

Section 2: Procedure

The following procedure estimates the solution of second derivate of an equation at a point $x v$.

$$
\begin{aligned}
& f(x)=\text { function } \\
& x v=\text { value at which the solution is desired } \\
& h=\text { starting step size value } \\
& n=\text { number of times starting step size is halved } \\
& \operatorname{SOD}(\mathrm{f}, \mathrm{xv}, \mathrm{~h}):=\left.\right|_{\text {deriv }} \leftarrow \frac{\mathrm{f}(\mathrm{xv}+\mathrm{h})-2 \cdot \mathrm{f}(\mathrm{xv})+\mathrm{f}(\mathrm{xv}-\mathrm{h})}{\mathrm{h}^{2}} \\
& \text { deriv }
\end{aligned}
$$

Section 3: Calculation

The exact value EV of the second derivative of the equation:
Given the function

$$
\mathrm{f}(\mathrm{x}) \rightarrow \mathrm{e}^{2 \cdot \mathrm{x}}
$$

First, using the derivative command the solution is found. In a second step, the exact value of the derivative is shown
The solution of the second derivative is

$$
\mathrm{f}^{\prime}(\mathrm{x}):=\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \mathrm{f}(\mathrm{x}) \quad \mathrm{f}^{\prime}(\mathrm{x}) \rightarrow 4 \cdot \mathrm{e}^{2 \cdot \mathrm{x}}
$$

The exact solution of the second derivative is

$$
\begin{aligned}
& \mathrm{EV}:=\mathrm{f}^{\prime}(\mathrm{xv}) \\
& \mathrm{EV}=11923.831948
\end{aligned}
$$

The next loop calculates the following:
Av: Approximate value of the second derivative using second order accurate approximation by calling the procedure "SOD"
Ev: Exact value of the second derivative
Et: True error
ε_{t} : Absolute relative true percentage error
Ea: Approximate error
ε_{a} : Absolute relative approximate percentage error
$\mathrm{n}_{\text {sig }}$: Least number of correct significant digits in an approximation

$$
\begin{aligned}
& \text { table1 }:=\text { for } \mathrm{i} \in 0 . . \mathrm{n}-1 \\
& \qquad \begin{array}{l}
\mathrm{N}_{\mathrm{i}} \leftarrow 2^{\mathrm{i}} \\
\mathrm{H}_{\mathrm{i}} \leftarrow \frac{\mathrm{~h}}{\mathrm{~N}_{\mathrm{i}}} \\
\mathrm{AV}_{\mathrm{i}} \leftarrow \operatorname{SOD}\left(\mathrm{f}, \mathrm{xv}, \mathrm{H}_{\mathrm{i}}\right) \\
\mathrm{E}_{\mathrm{t}_{\mathrm{i}}} \leftarrow \mathrm{EV}-\mathrm{AV}_{\mathrm{i}} \\
\varepsilon_{\mathrm{t}_{\mathrm{i}}} \leftarrow\left|\frac{\mathrm{E}_{\mathrm{t}_{\mathrm{i}}}}{\mathrm{EV}} \cdot 100\right| \\
\operatorname{augment}\left(\mathrm{H}, \mathrm{AV}, \mathrm{E}_{\mathrm{t}}, \varepsilon_{\mathrm{t}}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { table } 2:=\text { for } \mathrm{i} \in 0 . . \mathrm{n}-1
\end{aligned}
$$

The loop halves the value of the starting step size n times. Each time, the approximate value of the second derivative is calculated and saved in a vector. The approximate error is calculated after at least two approximate values of the derivative have been saved. The number of significant digits is calculated and written as the lowest real number. If the number of significant digits calculated is less than zero, then it is shown as zero.

Section 4: Table of Values

The next tables show the step size value, approximate value, true error, the absolute relative true percentage error, the approximate error, the absolute relative approximate percentage error and the least number of correct significant digits in an approximation as a function of the step size value.

		AV		F.	
		0	1	2	3
	0	0.2	1.21.104	-159.83	1.34
	1	0.1	$1.2 \cdot 10^{4}$	-39.8	0.33
	2	0.05	$1.19 \cdot 10^{4}$	-9.94	0.08
	3	0.03	$1.19 \cdot 10^{4}$	-2.48	0.02
	4	0.01	$1.19 \cdot 10^{4}$	-0.62	0.01
table $1=$	5	0.01	$1.19 \cdot 10^{4}$	-0.16	0
	6	0	$1.19 \cdot 10^{4}$	-0.04	$3.26 \cdot 10^{-4}$
	7	0	$1.19 \cdot 10^{4}$	-0.01	$8.14 \cdot 10^{-5}$
	8	$7.81 \cdot 10^{-4}$	$1.19 \cdot 10^{4}$	-0	$2.03 \cdot 10^{-5}$
	9	$3.91 \cdot 10^{-4}$	$1.19 \cdot 10^{4}$	-5.88•10-4	$4.93 \cdot 10^{-6}$
	10	$1.95 \cdot 10^{-4}$	$1.19 \cdot 10^{4}$	$-1.47 \cdot 10^{-4}$	$1.23 \cdot 10^{-6}$
	11	$9.77 \cdot 10^{-5}$	1.19•104	-3.25•10-4	$2.73 \cdot 10^{-6}$

Section 5: Graphs

The following graphs show the approximate solution, absolute relative true error, absolute relative approximate error and least number of significant digits as a function of step size.
x := 0 .. $\mathrm{h}+1$
Approximate Solution of the Second Derivative of a Function using Second Order Accurate Approximation as a Function of Step Size

Absolute Relative True Percentage Error as a
Function of Step Size

References

Numerical Differentiation of Continuous Functions. See
http://numericalmethods.eng.usf.edu/mws/gen/02dif/mws_gen_dif_txt_continuous.pdf

Questions

1. The velocity of a rocket is given by

$$
v(t)=2000 \cdot \ln \frac{140000}{140000-2100 \cdot t}-9.8 \cdot t
$$

Use second order derivative approximation method with a step size of 0.25 to find the jerk at $t=5 \mathrm{~s}$. Compare with the exact answer and study the effect of the step size.
2. Look at the true error vs. step size data for problem \# 1. Do you see a relationship between the value of the true error and step size ? Is this concidential?

Conclusions

To obtain more accurate values of the second derivative using second order accurate approximation, the step size needs to be smaller. As the spreadsheet shows, the smaller the step size value is, the approximation is closest to the exact value. By decreasing the step size, the least number of significant digits that can be trusted increases. However, a too small step size can result in noticeable round-off errors, and hence giving highly inaccurate results.

Legal Notice: The copyright for this application is owned by the author(s). Neither Mathcad nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application for-profit activities.

