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Introduction

The condition number allows one to quantify the accuracy in solution of
[A][X]=[C], where [A]nxn is an invertible square matrix, [X]nx1 is the solution
vector, and [C]nx1 is the right hand side array. Multiply the condition number by
machine epsilon and compare the result to 0.5 x 10-m to find out at least how many
m significant digits are at least correct in solution

           0.5 x 10-m < Cond(A) * machine ε         Equation (1.1)

To learn more about the relationship between condition number and the adequacy
of solution, click here.

The following simulation uses three different techniques to determine the condition
number of coefficient matrix [A]nxn.



Section 1: Input Data

Below are the input parameters to begin the simulation. This is the only section tha
requires user input. The user can change those values that are highlighted and Math
will calculate the condition number of [A]nxn using an exact method as well as two
approximate methods.
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Number of bits used for mantissa in floating point representation•

Bits_used_for_mantissa 23:=

Number of equations•

n rows A( ):=



Section 2: Calculating the Condition Number

In this section, three distinct methods are used to calculate the condition number of
coefficient matrix [A]. Each has its own advantages while utilizing theorems that re
the norm of a matrix to the conditioning of the matrix. Complete details for finding
norm of a matrix and its relationship to the conditioning of a matrix are given here

Method 1: Finding the exact value of the Condition Number of a matrix

The following method finds the exact condition number for a square matrix. The
exact formula is given by

                                         Cond(A) = ||A|| * ||A-1||                Equation (2.1)

Once the condition number is calculated, it can then be used to solve for m, the
number of significant digits that one can trust in solution.
Please note that, although this is the most direct method, it may not be practical in
its computational time for higher order matrices because this method requires
calculation of the inverse of coefficient matrix [A]. The problem in finding the
inverse lies in solving n sets of n equations which can be computationally intensiv
for large coefficient matrices.

Calculating the Condition Number:

Calculating the inverse of [A]:

Ainverse A 1−
:=

Calculating the norm of [A], or ||A||:

NA normi A( ):=

Calculating the norm of [A-1], or ||A-1||:

NAInv normi Ainverse( ):=

Calculating the condition number of [A] using Equation (2.1):

Cond_A NA NAInv⋅:=

Cond_A 46.036=



Calculating machine epsilon:

Machine_epsilon 2 Bits_used_for_mantissa−
:=

Machine_epsilon 1.192 10 7−
×=

Now that the condition number of [A] and machine epsilon have been found, Equati
(1.1) can be applied to determine the number of significant digits, m, that are correct
solution.

Calculating the number of significant digits that one can trust in solution:
Guess

m 1.0:=

Given

0.5 10 m−
⋅ Machine_epsilon Cond_A⋅=

Solving for m
sig_digits floor Find m( )( ):=

Because m can be a negative value, the following command returns the appropriat
number of significant digits that can be trusted.

trust_digits max sig_digits 0,( ):=

trust_digits 4=



Method 2: Finding an approximate value of the condition number

The following numerical method finds the condition number of [A] using the inequ

                                          Cond(A) > ||ΔX|| / ||X+ΔX||                    Equation (2.2)
                                                             ||ΔC|| / ||C||

However, the value of (X+ΔX) is equivalent to X'. Therefore, the inequality becom

                                          Cond(A) > ||ΔX|| / ||X'||                         Equation (2.3)
                                                          ||ΔC|| / ||C|| 

where ||ΔX||/||X'|| is the relative change in the norm of the solution vector and
||ΔC||/||C|| is the relative change in the norm of the right hand side vector. The ratio
between these two values quantifies the conditioning of a system of equations,
demonstrating the accuracy in solution. That is, for any small change made in the ri
hand side array, the resulting change in the solution vector will govern how accurat
system is and therefore how many significant digits one can trust in the solution of 
system of simultaneous linear equations. 

In this method, the condition number is calculated using Equation (2.3) by first
conducting the following steps:
1) A right hand side vector [C] is chosen such that the each element of the solution
vector equals 1. (i.e. [X] = [1,1,...,1] ).
2) A new, unbiased right hand side vector [C'] is then generated by Mathcad. This i
done by adding a random positive or negative value to each element of the old righ
hand side vector.
3) The new right hand side vector [C'] can then be used to calculate a new solution
vector [X'].

By creating a small relative change in the right hand side array (i.e., ||ΔC||/||C|| < 1), 
magnitude of the condition number will be largely influenced by the relative error i
solution vector, demonstrating how accurate the solution actually is.

NOTE: Each time the worksheet is executed, Mathcad will generate a new conditio
number. The user should run the worksheet several times to see if the estimate of th
condition number approaches the exact value given in Method 1. The greatest of th
generated values will be the most accurate approximation and will never exceed the
true condition number due to the above inequality, Equation (2.3).



Defining all vectors:
RHS 1 n..:=

RHS1 1 n..:=

X 1 n..:=

X1 1 n..:=

Step 1: Assigning values to [RHS] so that [X] equals [1,1,...1].

RHS
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i 1 n..∈for
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Solving for X.

X lsolve A RHS,( ):= X
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Step 2: Generating a new, unbiased right hand side vector [RHS'] by adding a random
value between -0.001*RHS[i] and +0.001*RHS[i] to create a small ΔC value.

RHS1

roll ceil rnd 2( )( )←

sign_val roll←

RHS1i RHSi 1−( )sign_val 0.001⋅ RHSi⋅ rnd 1( )( )⋅+←

i 1 n..∈for

RHS1

:=

RHS1
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Step 3: Calculating the new solution vector [X'].
X1 lsolve A RHS1,( ):= X1
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Notice the small difference between the values of the old and new right hand side vecto
Now look at the new solution vector [X1]. Do the values deviate much from the old
solution vector [X]? If not, then any small changes that are made in the right hand side
array do not affect the accuracy of the solution vector, and the solution can therefore be
trusted. Otherwise, the system of equations is ill-conditioned. 



Calculating the relative change in the norm of the solution vector
Norm of X1, or ||X'||:

X1norm max X1
→⎯⎯( ):=

X1norm 1.002=

Norm of ΔX, or
||ΔX||:

delX X1 X−:=

delXnorm max delX
→⎯⎯( ):=

delXnorm 2.492 10 3−
×=

The relative change in the norm of the solution vector is:

Num_Cond
delXnorm
X1norm

:=

Calculating the relative change in the norm of the right hand side array.

Norm of RHS, or ||RHS||:

RHSnorm max RHS
→⎯⎯( ):=

RHSnorm 212.047=

Norm of ΔRHS, or ||ΔRHS||:

delRHS RHS1 RHS−:=

delRHSnorm max delRHS
→⎯⎯⎯⎯( ):=

delRHSnorm 0.11=

The relative change in the norm of the right hand side array is:

Denom_Cond
delRHSnorm

RHSnorm
:=

The condition number can now be calculated using Equation (2.3)

Cond_AA
Num_Cond

Denom_Cond
:=

Cond_AA 4.781=



Method 3: A second technique in approximating the condition number

The following numerical technique is simpler than Method 2 as it requires fewer
calculations. This method utilizes the theorem

                                          Cond(A) >  ||A|| ||X||              Equation (2.4)
                                                             ||C||

The proof is as follows

Let
[X] = [A-1][C]

Applying norm properties, this equation becomes
||X|| < ||A-1|| ||C||

Multiplying ||A|| to both sides gives
||A|| ||X|| < Cond(A)*||C||
by the definition of condition number

And division by ||C|| results in the inequality of Equation (2.4).

In this technique, however, the right hand side values of [C] matrix are chosen to
equal [+1, +1, +1] with signs generated randomly. This will result in ||C||=1,
minimizing the number of calculations required to solve for Cond(A). Therefore, t
calculation is reduced to

                                           Cond(A) > ||A|| ||X||            Equation (2.5)

Again, the user should reexecute the worksheet to see if the greatest approximate
condition number approaches the exact condition number defined in Method 1.



Randomly generating a (+1) or (-1) value for each element of the right hand side array:
RHS2

sign_val ceil rnd 2( )( )←

RHSi 1−( )sign_val
←

i 1 n..∈for
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Solving for the solution vector:

X2 lsolve A RHS2,( ):=
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Calculating the norm of [A]:
Anorm normi A( ):=

Anorm 212.047=

Calculating the norm of the solution vector:

X2norm max X2
→⎯⎯( ):=

X2norm 0.17=

Calculating the condition number using Equation (2.5):

Cond_AAA Anorm X2norm⋅:=

Cond_AAA 36.007=
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Conclusion 

Mathcad helped us apply our knowledge of norms and condition numbers to quantify
accuracy in a solution for a system of simultaneous linear equations.

Questions 

Question 1: Choose a coefficient matrix [A] that is well-conditioned. For example,
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See how the condition number of the matrix affects the number of significant
digits that one can trust in solution.

Question 2: Choose a coefficient matrix [A] that is ill-conditioned. For example, 
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See how the condition number of the matrix affects the number of significant
digits that one can trust in solution.

Question 3: Choose the number of bits used for the mantissa in single and double
precision. See how these numbers affect the number of significant digits that one
can trust in the solution. 


