
SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS

Gauss-Seidel Method

2006 Jamie Trahan, Autar Kaw, Kevin Martin
University of South Florida
United States of America

kaw@eng.usf.edu

Introduction

This worksheet demonstrates the use of Mathcad to illustrate Gauss-Seidel Method, an
iterative technique used in solving a system of simultaneous linear equations.

Gauss-Seidel method is used to solve a set of simultaneous linear equations, [A] [X] =
[RHS], where [A]nxn is the square coefficient matrix, [X]nx1 is the solution vector, and
[RHS]nx1 is the right hand side array. The equations can be rewritten as

xi

rhsi
1

n

i

ai j,() x j⋅⎡⎣ ⎤⎦∑
=

− i j≠,
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

ai i,
:= Equation (1.1)

In certain cases, such as when a system of equations is large, iterative methods of
solving equations such as Gauss-Seidel method are more advantageous. Elimination
methods, such as Gaussian Elimination, are prone to round-off errors for a large set of
equations whereas iterative methods, such as Gauss-Seidel method, allow the user to
control round-off error. Also if the physics of the problem are well known, initial
guesses needed in iterative methods can be made more judiciously for faster
convergence.

The steps to apply Gauss-Seidel method are:
1) Make an initial guess for the solution vector [X]. This can be based on the physics of
the problem.
2) All proper values are plugged into Equation (1.1). The new x1 value that is
calculated will replace the previous guess, x1, in the solution vector. [X] will then be
used to calculate x2. This will be done for each xi from x1 to xn until a new solution
vector is complete. At this point, the first iteration is done.
3) The absolute relative approximate error is calculated by comparing each new guess
xi with the previous guess. The maximum of these errors is the absolute relative
approximate error at the end of the iteration.
4) The new solution vector becomes the old solution vector and Steps 2-3 are repeated
until either the maximum number of iterations have been conducted or the
pre-specified tolerance has been met.

Complete details of how Equation (1.1) is derived as well as the pitfalls of the method
can be found here.

An example demonstrating Gauss-Seidel method follows.

Section 1: Input

The following are the input parameters to begin the simulation. This is the only section that
requires user input. The user can change those values that are highlighted and the worksheet
will use four iterations to calculate an approximate solution to the system of equations.

ORIGIN 1:=

Number of equations.•

n 4:=

The nxn coefficient matrix [A]. Note that if the coefficient matrix is diagonally•
dominant, convergence of the solution is ensured. Otherwise, the solution may or may
not converge.

A

10

2

2

2

3

24

2

2

4

2

34

2

5

4

3

12

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

:=

nx1 right hand side array.•

RHS

22

32

41

18

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

:=

nx1 initial guess of the solution vector.•

Xinit

1

23

4

50

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

:=

Section 2: Gauss-Seidel Iterations

Four iterations will be conducted using Gauss-Seidel method. For each iteration, the following
three values will be calculated:
1) New estimate of the solution vector
2) Absolute relative approximate error (abs_ea) for each xi

3) Maximum relative approximate error (Max_abs_ea) for the given iteration

Iteration 1

1) For the first iteration, the initial guess values of the solution vector [Xinit], as well as the
proper elements of coefficient matrix [A] and the right hand side vector [RHS] are substituted
into Equation (1.1) to calculate a new, approximate solution vector, denoted as [Xnew1] for
the first iteration.

The following procedure calculates [Xnew1] using Equation (1.1).

Xnew1

sum 0←

sum sum Ai j, Xinit j+← j i≠if

j 1 n..∈for

Xiniti

RHSi sum−

Ai i,
←

X Xinit←

i 1 n..∈for

X

:= Defining row elements

Initializing the series sum to 0

Defining column elements

Generating the summation term by only
adding i j≠ terms

Applying equation (1.1)

Replacing old guess with new guess

Returning new, approximate [X] vector

The new approximate solution vector is

Xnew1

31.3−

4.725−

1.08676−

7.68529

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

2) The absolute relative percentage approximate error for each Xnewi is calculated by the
following procedure

abs_ea1

abseai

Xnew1i Xiniti−

Xnew1i
100.0⋅←

i 1 n..∈for

absea

:=

The absolute relative percentage approximate error is

abs_ea1

103.19489

586.77249

468.06495

550.59319

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

3) The maximum of these errors is the absolute relative approximate error at the end of the
first iteration.

Max_abs_ea1 max_absea 0←

max_absea abs_ea1i← abs_ea1i max_absea>if

i 1 n..∈for

max_absea

:=

The maximum absolute relative percentage approximate error at the end of iteration 1 is

Max_abs_ea1 586.77249=

Iteration 2

1) The new solution vector, [Xnew1], obtained in iteration 1 will become the old solution vector
for iteration 2.

Defining the old solution vector as the solution vector that was obtained from the previous
iteration:

Xold Xnew1:=

Xold

31.3−

4.725−

1.08676−

7.68529

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

The new approximate solution vector for iteration 2 will now be calculated with [Xold],
[A], and [RHS] by substituting the proper elements into Equation (1.1).

Xnew2

sum 0←

sum sum Ai j, Xoldj+← j i≠if

j 1 n..∈for

Xoldi

RHSi sum−

Ai i,
←

X Xold←

i 1 n..∈for

X

:= Defining row elements.

Initializing the series sum to 0.

Defining column elements.
Generating the summation term by only
adding i j≠ terms.

Applying Equation (1.1).

Replacing old guess with new guess.

Returning new, approximate [X] vector.

At the end of the 2nd iteration, the new estimate of the solution vector is

Xnew2

0.20956

0.12555

0.50806

1.35947

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

2) The absolute relative percentage approximate error for the second iteration is calculated
by the following procedure

abs_ea2

abseai

Xnew2i Xoldi−

Xnew2i
100.0⋅←

i 1 n..∈for

absea

:=

The absolute relative percentage approximate error is

abs_ea2

15036.14

3863.397

313.907

465.314

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

3) The maximum absolute relative approximate error for the second iteration is defined by the
following procedure

Max_abs_ea2 max_absea 0←

max_absea abs_ea2i← abs_ea2i max_absea>if

i 1 n..∈for

max_absea

:=

The maximum absolute relative percentage approximate error for the iteration 2 is

Max_abs_ea2 15036.14035=

Iteration 3

1) Again, the new estimate of the solution vector from the previous iteration will replace the old
solution vector.

Xold Xnew2:=

Xold

0.20956

0.12555

0.50806

1.35947

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

Substituting the proper [Xold], [A], and [RHS] elements into Equation (1.1) with the
following procedure will return an estimate of the solution vector after 3 iterations.

Xnew3

sum 0←

sum sum Ai j, Xoldj+← j i≠if

j 1 n..∈for

Xoldi

RHSi sum−

Ai i,
←

X Xold←

i 1 n..∈for

X

:= Defining row elements.

Initializing the series sum to 0.

Defining column elements.
Generating the summation term by only
adding i j≠ terms.

Applying Equation (1.1).

Replacing old guess with new guess.

Returning new estimate of solution vector [X].

The new guess solution vector after the third iteration is:

Xnew3

1.27938

0.9578

0.95433

0.96808

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

2) Calculating the absolute relative approximate error for the third iteration:

abs_ea3

abseai

Xnew3i Xoldi−

Xnew3i
100.0⋅←

i 1 n..∈for

absea

:=

The absolute relative percentage approximate error for iteration 3 is

abs_ea3

83.62023

86.89171

46.7631

40.42947

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

3) Defining the maximum absolute relative percentage error for iteration 3:

Max_abs_ea3 max_absea 0←

max_absea abs_ea3i← abs_ea3i max_absea>if

i 1 n..∈for

max_absea

:=

The maximum absolute relative approximate error for the third iteration is

Max_abs_ea3 86.89171=

Iteration 4

1) The new solution vector obtained at the end of iteration 3 becomes the old guess
solution vector:

Xold Xnew3:=

Xold

1.27938

0.9578

0.95433

0.96808

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

Substituting the proper [Xold], [A], and [RHS] elements into equation (1.1) with the
following procedure will yield the final estimate of the solution vector.

Xnew4

sum 0←

sum sum Ai j, Xoldj+← j i≠if

j 1 n..∈for

Xoldi

RHSi sum−

Ai i,
←

X Xold←

i 1 n..∈for

X

:= Defining row elements

Initializing the series sum to 0.

Defining column elements.

Generating the summation term by only
adding i j≠ terms.

Applying Equation (1.1).

Replacing old guess with new guess.

Returning new, approximate [X] vector.

The final estimate of the solution vector is

Xnew4

1.04689

1.00522

0.99975

0.99136

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

2) Calculating the absolute relative percentage approximate error for the fourth iteration:

abs_ea4

abseai

Xnew4i Xoldi−

Xnew3i
100.0⋅←

i 1 n..∈for

absea

:=

The absolute relative percentage approximate error for iteration 3 is

abs_ea4

18.17212

4.95054

4.75948

2.40428

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

3) Defining the maximum absolute relative percentage error for iteration 4:

Max_abs_ea4 max_absea 0←

max_absea abs_ea4i← abs_ea4i max_absea>if

i 1 n..∈for

max_absea

:=

The maximum absolute relative percentage approximate error for the fourth and final
iteration is

Max_abs_ea4 18.17212=

Section 3: Exact Solution

The exact solution to the system of linear equations can be found by using Mathcad's
built-in tools.

exactsoln lsolve A RHS,():=

The exact solution is

exactsoln

1

1

1

1

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

The following procedure calculates the absolute relative percentage true error (abs_et).

abs_et

abs_eti

exactsolni Xnew4i−

exactsolni
100.0⋅←

i 1 n..∈for

abs_et

:=

The absolute relative percentage true error is

abs_et

4.68864

0.52183

0.02487

0.86427

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

The maximum absolute relative percentage true error is

Max_abs_et max_abset 0←

max_abset abs_eti← abs_eti max_abset>if

i 1 n..∈for

max_abset

:=

Max_abs_et 4.68864=

References

Autar Kaw, Holistic Numerical Methods Institute,
http://numericalmethods.eng.usf.edu/mws
How does Gauss-Seidel method work?

Conclusions

Mathcad helped us apply our knowledge of Gauss-Seidel method to solve a system of n
simultaneous linear equations. The values obtained are

Final approximate solution vector using 4 iterations

Xnew4

1.04689

1.00522

0.99975

0.99136

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

Exact value

exactsoln

1

1

1

1

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

Absolute relative percentage true error

abs_et

4.68864

0.52183

0.02487

0.86427

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

=

Question 1: Change the coefficient matrix to one that is not diagonally dominant and see if
Gauss-Seidel method converges.

Question 2: See if you can get a set of equations with a coefficient matrix that is not diagonally
dominant to converge by Gauss-Seidel method.

