Topic	: Additional Interpolation Topics			
Simulation	: Comparing Polynomial Interpolation and Spline			
	Interpolation			
Language	: Mathcad 2001			
Authors	: Nathan Collier, Autar Kaw, Ginger Fisher			
Date	: 25 June 2002			
Abstract	: A rapid robot arm with a laser is used to make seven			
holes on a rectangular plate 12" X 8" at six points as shown. The path				
of the robot going from one indentation point to another needs to be				
smooth so as to avoid sharp jerks in the arm that can otherwise create				
premature wear and tear of the robot arm. One suggestion has been				
to fit a fifth order polynomial through the six points. Another				
suggestion was to fit a quadratic spline through the holes. Which				
suggestion is better so that the robot path is shorter but also smooth?				

INPUTS: The following is the o	data	(x-y) coordinate data of the center of the six
noies.		$\begin{pmatrix} 2 \end{pmatrix}$
		4.5
Array of x data:	v .—	5.25
	х.=	7.81
		9.2
		(10.6)
		(7.2)
		7.1
Array of y data		6
	y :=	5
		3.5
		(5)

SOLUTION

Polynomial Interpolation:

Using polynomial interpolation to find the path that goes through the six data points.

The "regress" function of MATHCAD is used to conduct polynomail interpolation. If one regresses 'n' data points to a 'n-1th order polynomial, it is interpolation.

z := regress(x, y, rows(x) - 1)

 $f_{polynomial}(a) := interp(z, x, y, a)$

range := $x_0, x_0 + 0.01 \dots x_5$

Path of robot arm using polynomial interpolation

Cubic Splines:

S := cspline(x, y)

 $f_{spline}(z) := interp(S, x, y, z)$

Path of the robot arm using cubic spline interpolation

Path of the robot arm compared using polynomial interpolation and cubic spline interpolation

results =	"Type of interpolation"	"Polynomial"	"Cubic Spline"
	"Length of curve"	14.919	12.932