function SecondOrder
clc
clear all

% Revised:
% February 11, 2008

% Authors:
% Ana Catalina Torres, Dr. Autar Kaw

% Purpose
% To illustrate the concept of approximate error, absolute approximate
% error, relative approximate error and absolute relative approximate
% error, number of significant digits correct when using Difference
% Approximation of the second derivative of continuous functions method.

% Inputs
% Clearing all data, variable names, and files from any other source and
% clearing the command window after each successive run of the program.
% This is the only place in the program where the user makes changes to
% the data
% Function f(x)

function k=f(x)
 k=exp(2*x);
end

% Declaring 'x' as a variable
x = sym('x','real');

% Value of x at which f '(x) is desired, xv
xv=4;

% Starting step size, h
h=0.2;

% Number of times starting step size is halved
n=12;

%---
disp(sprintf(' Differentiation of Continuous Functions'))
disp(sprintf(' Second Derivative Approximation'))
disp(sprintf(' Ana Catalina Torres, Autar Kaw'))
disp(sprintf(' University of South Florida'))
disp(sprintf(' United States of America'))
disp(sprintf(' kaw@eng.usf.edu'))
%---
% This worksheet demonstrates the use of Matlab to illustrate the
% approximation of the second derivative of continuous functions. A second'
% derivative approximation uses a point h ahead and a point h behind of the'
% given value of x at which the second derivative of f (x) is to be found.'
%
% The following simulation approximates the second derivative of a'
% function using second order accurate approximation. The user inputs are
% a) function,
% f(x)=%g')
% b) point at which the derivative is to be found, xv = %g',xv)
% c) starting step size, h = %g',h))
% d) number of times user wants to halve the starting step size, n = % %
g',n))
% The outputs include
% a) approximate value of the second derivative at the point and')
% b) exact value')
% c) true error, absolute relative true error, approximate error and')
% d) absolute relative approximate error, least number of correct ')
% e) digits in the solution as a function of step size.'
% All the information must be entered at the beginning of the M-File.'
%
% The exact value EV of the second derivative of the equation:'
% First, using the derivative command the solution is found. ')
% Soln=diff(f(x),2)
% In a second step, the exact value of the derivative is shown')
% The exact solution of the first derivative is:')
% Ev=subs(Soln,x,xv)
% An internal loop calculates the following:')
% Av: Approximate value of the second derivative using second
% approximation')
% Ev: Exact value of the second derivative')
% Et: True error')
% et: Absolute relative true percentage error')
% Ea: Approximate error')
% ea: Absolute relative approximate percentage error')
% Sig: Least number of correct significant digits in an approximation')
% j=zeros(1,n);
N=zeros(1,n);
H=zeros(1,n);
Av=zeros(1,n);
Et=zeros(1,n);
et=zeros(1,n);
Ea=zeros(1,n);
ea=zeros(1,n);
Sig=zeros(1,n);

for i=1:n
 j(i)=i;
 N(i)=2^(i-1);
 H(i)=h/(N(i));
 Av(i)=(f(xv+H(i))-2*f(xv)+f(xv-H(i)))/((H(i))^2);
 Et(i)=Ev-Av(i);
et(i)=abs((Et(i))/Ev*100);
 if i>1
 Ea(i)=Av(i)-Av(i-1);
e(a(i)=abs((Ea(i)))/Av(i)*100;
 if 0<ea(i)<5
 Sig(i)=floor((2-log10(ea(i)/0.5)));
 else
 Sig(i)=0;
 end
 end
end

% The loop halves the value of the starting step size n times. Each time
% the approximate value of the derivative is calculated and saved in a
% vector. The approximate error is calculated after at least two
% approximate values of the derivative have been saved. The number of
% significant digits is calculated. If the number of significant digits
% calculated is less than zero, it is shown as zero.

disp(sprintf('

********************* Section 3: Table of Values
************************'))
disp(sprintf('
The next tables show the step size value, approximate value, true
error, the absolute relative true percentage error, the approximate error, the'))
disp(sprintf('absolute relative approximate percentage error and the least number of '))
disp(sprintf('correct significant digits in an approximation as a function of the
step\size value.\n\n'))
disp(' H Av Et et')
Results=[H' Av' Et' et']
disp(Results)
disp(sprintf(''))
disp(sprintf(' H Av Ea ea Sig'))
disp(ResultsCont=[H' Av' Ea' ea' Sig']
disp(ResultsCont)
disp(sprintf('\n\n**************************** Section 4: Graphs
**************************'))

disp(sprintf('The attached graphs show the approximate solution, absolute relative
true'))
disp(sprintf('error, absolute relative approximate error and least number of
significant'))
disp(sprintf('digits as a function of the number of iterations.\n'))

set(0,'Units','pixels')
scnsize=get(0,'ScreenSize');
wid=round(scnsize(3));
hei=round(0.9*scnsize(4));
wind=[1, 1, wid, hei];
figure('Position',wind)

% Approximate Solutions vs. Step size:

subplot(2,2,1); plot(H,Av,'LineWidth',2,'Color','g')
xlabel('Step Size')
ylabel('Approximate Value')
title({'Approximate Solution of the Second Derivative using
'Forward Difference Approximation as a Function of Step Size'})

% Absolute relative true error vs. Step size:

subplot(2,2,2); plot(H,et,'LineWidth',2,'Color','y')
xlabel('Step Size')
ylabel('Absolute Relative True Error')
title('Absolute Relative True Percentage Error as a Function of Step Size')

% Absolute relative approximate error vs. Step size:

subplot(2,2,3); plot(H(2:n),ea(2:n),'LineWidth',2,'Color','m')
xlabel('Step Size')
ylabel('Absolute Relative Approximate Error')
title('Absolute Relative Approximate Percentage Error as a Function of Step Size')

% Number of significant digits vs. the number of iterations.
subplot(2,2,4);
bar(j,Sig);
xlabel('Number of iterations');
ylabel('Number of Significant digits');
title('Number of Significant Digits as function of Number of Iterations');

disp(sprintf('\\n\\n***************************** References
*******************************'))

disp(sprintf('Numerical Differentiation of Continuous Functions. See'))
disp(sprintf('http://numericalmethods.eng.usf.edu/mws/gen/02dif/mws_gen_dif_txt\ncontinuous.pdf'))
disp(sprintf('

****************************** Questions
**

1. The velocity of a rocket is given by\n\n(140000/(140000-2100t))-9.8*t'))

disp(sprintf('Use second order derivative approximation method with a step size of 0.25
'))
disp(sprintf('to find the jerk at t=5s. Compare with the exact answer and study the
effect\nof the step size.'))

disp(sprintf('

2. Look at the true error vs. step size data for problem # 1. Do you
see')
disp(sprintf('a relationship between the value of the true error and step size ?'))
disp(sprintf('Is this coincidental?'))

disp(sprintf('

***************************** Conclusions

To obtain more accurate values of the second derivative using second
accurate approximation, the step size needs to be smaller. As the
spreadsheet shows, the smaller the step size value is, the approximation is
closest to the exact value. By decreasing the step size, the least number of
significant digits that can be trusted increases. However, a too small step
size can result in noticeable round-off errors, and hence giving highly inaccurates results. '))

disp(sprintf('

--

Legal Notice: The copyright for this application is owned by the
author(s). Neither Mathcad nor the author are responsible for any errors
contained within and are not liable for any damages resulting from the use of
this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use
this application for-profit activities. '))

end