
Root jumping several roots away--Newton-Raphson Method.

© 2003 Nathan Collier, Autar Kaw, Jai Paul , Michael Keteltas, University of South Florida ,
kaw@eng.usf.edu , http://numericalmethods.eng.usf.edu/mws

NOTE: This worksheet demonstrates the use of Maple to illustrate how, in the Newton-Raphson
method, an initial guess close to one root can jump to a location several roots away when a function is

oscillatory in nature.

Introduction
Although, Newton-Raphson method [text notes][PPT] converges faster than any other method it still
has a few drawbacks.One of them is Root jumping. In some cases where the function f(x) is
oscillating and has a number of roots, one may choose an initial guess close to a root. However, the
guesses may jump and converge to some other root. The following simulation illustrates how, in the
Newton-Raphson method, an initial guess close to one root can jump to a location several roots
away when a function is oscillatory in nature.

> restart;

Section I : Data.
Function in f(x)=0
> f(x):=sin(x):
Initial guess
> x0:=1.431:
Upper bound of range of 'x' that is desired
> uxrange:=10.0:
Lower bound of range of 'x' that is desired
> lxrange:=-10.0:

Section II: Before you start.
Because the method uses a line tangent to the function at the initial guess, we must calculate the
derivative of the function to find the slope of the line at this point. Here we will define the derivative
of the function f(x) as g(x).
> g(x):=diff(f(x),x);

 := ()g x ()cos x

We now plot the data. The following function determines the upper and lower ranges on the Y-axis.
This is done using the upper and lower ranges of the X-axis specified, and the value of the original

functional at these values.

> yranger:=proc(uxrange,lxrange)
local i,maxi,mini,tot;
maxi:=eval(f(x),x=lxrange);
mini:=eval(f(x),x=lxrange);
for i from lxrange by (uxrange-lxrange)/10 to uxrange do
if eval(f(x),x=i)<mini then mini:=eval(f(x),x=i) end if;
if eval(f(x),x=i)>maxi then maxi:=eval(f(x),x=i) end if;
end do;
tot:=maxi-mini;
-0.1*tot+mini..0.1*tot+maxi;
end proc:

> yrange:=yranger(uxrange,lxrange):
> xrange:=lxrange..uxrange:

The following calls are needed to use the plot function
> with(plots):
Warning, the name changecoords has been redefined

> with(plottools):
Warning, the name arrow has been redefined

> plot(f(x),x=xrange,y=yrange,title="Entered function on given
interval",legend=["Function"],thickness=3);

Section III: Iteration 1.
The Newton Raphson Method works by taking a tangent line at the value of the function at the
initial guess, and seeing where that tangent line crosses the x-axis. This value will be the new
estimate for the root..
The first estimate of the root is,
> x1:=x0-eval(f(x),x=x0)/eval(g(x),x=x0);

 := x1 -5.675604171
How good is that answer? Find the absolute relative approximate error to judge.
> epsilon:=abs((x1-x0)/x1)*100;

 := ε 125.2131748
While not necesary to the method, for graphing purposes we define the equation of the tangent line
touching x0.
> tanline(x):=eval(g(x),x=x0)*x+eval(f(x),x=x0)-eval(g(x),x=x0)*x

0:

> plot([f(x),[x0,t,t=yrange],[x1,t,t=yrange],tanline(x)],x=xrange
,y=yrange,title="Entered function on given interval with
current and next root\n and tangent line of the curve at the
current root",legend=["Function", "x0, Current root", "x1, New
root", "Tangent line"],thickness=3);

Section IV: Iteration 2.
The same method is used in iterations to calculate the next estimation of the root. The second
estimate of the root is,
> x2:=x1-eval(f(x),x=x1)/eval(g(x),x=x1);

 := x2 -6.370928654
How good is that answer? Find the absolute relative approximate error to judge.
> epsilon:=abs((x2-x1)/x2)*100;

 := ε 10.91402087
While not necesary to the method, for graphing purposes we define the equation of the tangent line
touching x0.
> tanline(x):=eval(g(x),x=x1)*x+eval(f(x),x=x1)-eval(g(x),x=x1)*x

1:

> plot([f(x),[x1,t,t=yrange],[x2,t,t=yrange],tanline(x)],x=xrange
,y=yrange,title="Entered function on given interval with
current and next root\n and tangent line of the curve at the
current root",legend=["Function", "x1, Current root", "x2, New
root", "Tangent line"],thickness=3);

Section V: Iteration 3.
The same method is used in iterations to calculate the next estimation of the root. The third estimate
of the root is,
> x3:=x2-eval(f(x),x=x2)/eval(g(x),x=x2);

 := x3 -6.282959436
How good is that answer? Find the absolute relative approximate error to judge.
> epsilon:=abs((x3-x2)/x3)*100;

 := ε 1.400123921

While not necesary to the method, for graphing purposes we define the equation of the tangent line
touching x0.
> tanline(x):=eval(g(x),x=x2)*x+eval(f(x),x=x2)-eval(g(x),x=x2)*x

2:

> plot([f(x),[x2,t,t=yrange],[x3,t,t=yrange],tanline(x),[x0,t,t=y
range]],x=xrange,y=yrange,title="Entered function on given
interval with current and next root\n and tangent line of the
curve at the current root",legend=["Function", "x2, Current
root", "x3, New root", "Tangent line", "Original
guess"],thickness=3);

>

Section VI: Conclusion.

Maple helped us to apply our knowledge of numerical methods of finding roots of a nonlinear
equation using the Newton-Raphson method to understand how an initial guess close to one root can
jump to a location several roots away when a function is oscillatory in nature.

References
[1] Nathan Collier, Autar Kaw, Jai Paul , Michael Keteltas, Holistic Numerical Methods Institute, See
http://numericalmethods.eng.usf.edu/mws/gen/03nle/mws_gen_nle_txt_newton.pdf

Disclaimer: While every effort has been made to validate the solutions in this worksheet, University of South Florida and
the contributors are not responsible for any errors contained and are not liable for any damages resulting from the use of this
material.

