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NOTE: This worksheet demonstrates the use of Maple to illustrate the Secant method of finding roots of 
a nonlinear equation.

Introduction
Secant method  is derived from the Newton-Raphson Method.   Sometimes evaluating the derivative 
of the function could be very tedious and cumbersome. To overcome this, the derivative in the 
Newton-Raphson Method formula is approximated and the next estimate is given as
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This method now requires two initial guesses, but unlike the Bisection Method, the two initial 
guesses do not need to bracket the root of the equation.  The Secant method may or may not 
converge, but when it converges, it converges faster than the Bisection Method.  However, since the 
derivative is approximated, it converges slower then Newton-Raphson method.

For detailed explanation of the Secant Method see [Click here for textbook notes][Click here for 
PowerPoint presentation]

The following simulation illustrates the Secant Method of finding roots of a nonlinear equation.

> restart;

Section I : Data.
You are working for 'DOWN THE TOILET COMPANY' that makes floats for ABC commodes.  
The ball has a specific gravity of 0.6 and has a radius of 5.5 cm.  



 
The equation that gives the depth 'x' in meters to which the ball is submerged under water is given 
by 010993.3165.0 423 =×+− −xx .  Use Secant Method of solving nonlinear equations to find the 
distance to which the ball will get submerged when floating in water.  

Function in f(x)=0
> f(x):=x^3-0.165*x^2+3.993*10^(-4):
Initial guess 1
> xguess1:=0.05:
Initial guess 2
> xguess2:=0.02:
Upper bound of range of 'x' that is desired
> uxrange:=0.12:
Lower bound of range of 'x' that is desired
> lxrange:=-0.02:

Section II: Plotting the Data.
We now plot the data. The following function determines the upper and lower ranges on the y-axis. 
This is done using the upper and lower ranges of the x-axis specified, and the value of the original 
functional at these values.

> yranger:=proc(uxrange,lxrange) 
local i,maxi,mini,tot; 
maxi:=eval(f(x),x=lxrange); 
mini:=eval(f(x),x=lxrange); 
  for i from lxrange by (uxrange-lxrange)/10 to uxrange do 
      if eval(f(x),x=i)<mini then mini:=eval(f(x),x=i) end if; 
      if eval(f(x),x=i)>maxi then maxi:=eval(f(x),x=i) end if; 



  end do; 
tot:=maxi-mini; 
-0.1*tot+mini..0.1*tot+maxi; 
end proc:

> yrange:=yranger(uxrange,lxrange):
> xrange:=lxrange..uxrange:

The following calls are needed to use the plot function
> with(plots):
Warning, the name changecoords has been redefined 

> with(plottools):
Warning, the name arrow has been redefined 

> plot(f(x),x=xrange,y=yrange,title="Entered function on given 
interval",legend=["Function"],thickness=3);



Section III: Iteration 1.
So, first we choose two initial guesses of the root. It should be noted that these two guesses do not 
have to bracket the root.  We have called the two initial guesses xguess1 and xguess2, as that will be 
the format for subsequent iterations. It does not matter which guess is xguess1 or xguess2 (try 
switching the numbers below and see what happens! You will find that one converges faster than 
the other). The formula mentioned in the introduction above is then applied to find the first estimate.
> x1:=xguess2-(eval(f(x),x=xguess2)*(xguess1-xguess2))/(eval(f(x)

,x=xguess1)-eval(f(x),x=xguess2));
 := x1 0.06461437908



How good is that approximation? Find the absolute relative approximate error.
> epsilon:=abs((x1-xguess2)/x1)*100;

 := ε 69.04713736

Although it is not necesary for the method, it is helpful to define the equation for the secant line 
passing through the two guesses. This function will be used for the graph.
> m:=(eval(f(x),x=xguess2)-eval(f(x),x=xguess1))/(xguess2-xguess1

):
> secantline:=m*x+eval(f(x),x=xguess2)-m*xguess2:

> plot([f(x),[xguess1,t,t=yrange],[xguess2,t,t=yrange],[x1,t,t=yr
ange],secantline(x)],x=xrange,y=yrange,title="Entered function 
on given interval with current and next root\n and secant line 
between two guesses",legend=["Function", "xguess1, First 
guess", "xguess2, Second guess", "x1, New guess", "Secant 
line"],thickness=3);



Section IV: Iteration 2.
Using the same formula, calculate the next estimate of the root.
> x0:=xguess2:
Estimate of the root
> x2:=x1-(eval(f(x),x=x1)*(x0-x1))/(eval(f(x),x=x0)-eval(f(x),x=x

1));
 := x2 0.06216668835

Absolute relative approximate error



> epsilon:=abs((x2-x1)/x2)*100;
 := ε 3.937302750

Secant line for the graph
> m:=(eval(f(x),x=x1)-eval(f(x),x=x0))/(x1-x0):
> secantline:=m*x+eval(f(x),x=x1)-m*x1:
> plot([f(x),[x0,t,t=yrange],[x1,t,t=yrange],[x2,t,t=yrange],seca

ntline(x)],x=xrange,y=yrange,title="Entered function on given 
interval with current and next root\n and secant line between 
two guesses",legend=["Function", "x0, First guess", "x1, Second 
guess", "x2, New guess", "Secant line"],thickness=3);



Section V: Iteration 3.
Using the same formula, calculate the next estimate of the root.

Estimate of the root
> x3:=x2-(eval(f(x),x=x2)*(x1-x2))/(eval(f(x),x=x1)-eval(f(x),x=x

2));
 := x3 0.06237886745

Absolute relative approximate error
> epsilon:=abs((x3-x2)/x3)*100;

 := ε 0.3401458037
Secant line for the graph
> m:=(eval(f(x),x=x2)-eval(f(x),x=x1))/(x2-x1):
> secantline:=m*x+eval(f(x),x=x2)-m*x2:
> plot([f(x),[x1,t,t=yrange],[x2,t,t=yrange],[x3,t,t=yrange],seca

ntline(x)],x=xrange,y=yrange,title="Entered function on given 
interval with current and next root\n and secant line between 
two guesses",legend=["Function", "x1, First guess", "x2, Second 
guess", "x3, New guess", "Secant line"],thickness=3);



> 

Section VI: Conclusion.

Maple helped us to apply our knowledge of numerical methods of finding roots of a nonlinear 
equation to simulate the secant method.
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