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NOTE: This worksheet demonstrates the use of Maple to illustrate three different techniques in finding
the condition number of a coefficient matrix [A], .

[> restart;

V Introduction
The condition number allows one to quantify the accuracy in solution of [A] [X] = [C], where [A],,,
is an invertible square matrix, [X], , is the solution vector, and [C],_, is the right hand side array.

Multiply the condition number by machine epsilon, and compare the result to 0.5 x 10™ to find out at
least how many m significant digits are correct in solution.

0.5x10 ~ " < Cond(A) - (machine ¢)
0.5x10™™) < Cond(A) machine & (1.1)

To learn more about the relationship between condition number and the adequacy of solutions, click
here.

The following simulation uses three different techniques to determine the condition number of
coefficient matrix [A], .

V Section 1: Input Data

Below are the input parameters to begin the simulation. This is the only section that requires user
input. Once the values are entered, Maple will calculate the condition number using an exact method
as well as two approximate methods.

Input Parameters:

A = nxn invertible square matrix

n =number of equations

Bits_used_for_mantissa = number of bits used for mantissa in floating point representation




[> restart;

> A:=Matrix([[8,12,1,7],[1,2,3.001,6],[57,9,1,4],[1.047,108,98,5]11
) ;
n:=4;
Bits_used for mantissa:=23; .
8 12 1 7
1 2 3001 6
A=
57 9 1 4
| 1.047 108 98 5 |
n:=4
B Bits_used for mantissa =23 (2.1)

V¥ Section 2: Calculating the Condition Number

In this section, three distinct methods are used to calculate the condition number of coefficient matrix
[A]. Each has its own advantages while utilizing theorems that relate the norm of a matrix to the
conditioning of the matrix. Complete details for finding the norm of a matrix and its relationship to

the conditioning of a matrix are given here.

V Method 1: Finding the exact value of the Condition Number of a

matrix

The following method finds the exact condition number of a square matrix. The exact formula is
given by

Cond(A) =|A[[*|A™ (3.1L.A)

Once the condition number is calculated, it can then be used to solve for m, the number of
significant digits that one can trust in solution.

Please note that, although this is the most direct method it may not be practical in its
computational time for higher order matrices because this method requires calculation of the
inverse of coefficient matrix [A]. The problem in finding the inverse lies in solving n sets of n
equations which can be computationally intensive for large coefficient matrices.

Calculating the Condition number:
> with (LinearAlgebra) :
#Calculating [A'l].
Ainverse:=MatrixInverse (A) :

> #Calculating [A]l.




L NA:=Norm(A,infinity):
> #Calculating ||A”].
L NAInv:=Norm(Ainverse,infinity):
> #Calculating the condition number of [A] knowing that Cond(A)=||A||*||A™}.
Cond A:=NA*NAInv;
i Cond_A :=46.03604065 (3.1.1)
>
Calculating machine epsilon:
> Machine epsilon:=evalf (2” (-Bits_used for mantissa));
Machine_epsilon :=1.192092896 10/ (3.1.2)
:Calculating the number of significant digits that one can trust in solution:
> #Using Equation (1.1).
sig digits:=floor (solve(0.5*10" (-m)=Machine epsilon*Cond A,m))

Trust_digits:=max(0,sig _digits);
Trust digits =4 (3.1.3)

V Method 2: Finding an approximate value of the condition number

The following numerical method finds the condition number of [A] using the inequality

Cond(A) > [|AX]]/ [[X+AX

IACIH/IC]

(3.2.A)

However, the value (X + AX) is equivalent to X'. The inequality then becomes

Cond(A) > [|AX]] /I X"

IAC| /Il

(3.2.B)

where ||AX]| / [|X"|| is the relative change in the norm of the solution vector and ||[AC|| / ||C|| is the
relative change in the norm of the right hand side vector. The ratio between these two values
quantifies the conditioning of a system of equations, demonstrating the accuracy in solution. That
is, for any small change made in the right hand side array, the resulting change in the solution
vector will govern how accurate the system is and therefore how many significant digits one can
trust in the solution of a system of simultaneous linear equations.

In this method, the condition number is calculated using equation (3.2.B) by first conducting the
following steps:
1) A right hand side vector [C] is chosen such that the solution vector equals 1. (i.e. [X] =[1,1,...,

1).




2) A new, unbiased right hand side vector [C'] is then generated by Maple. This is done by adding
a random positive or negative value to each element of the old right hand side vector.

3) The new right hand side vector [C'] can then be used to calculate a new solution vector [X'].

By creating a small relative change in the right hand side array (i.e., ||AC||/||C|| < 1), the magnitude
of the condition number will be largely influenced by the relative error in the solution vector,
demonstrating how accurate the solution actually is.

NOTE: Each time the worksheet is executed, Maple will generate a new condition number. The
user should run the worksheet several times to see if the estimate of the condition number
approaches the exact value given in Method 1. The greatest of the generated values will be the
most accurate approximation and will never exceed the true condition number due to the above
inequality, Eq.(3.2.B).

Parameter names:

RHS = old right hand side array [RHS]
RHS1 = new right hand side array [RHS']
X = old solution vector [X]

X1 = new solution vector [X']

> #Defining RHS as a vector.
RHS:=Vector(l..n):
#Defining RHSI as a vector.
RHS1 :=Vector(l. .n):
#Defining X as a vector.
X:=Vector(l..n):
#Defining X1 as a vector.
X1l:=Vector(l..n):

> #Step 1: Assigning values to [RHS] so that [X] equals [1,..,1].
for i from 1 by 1 to n do
RHS[i] :=add (A[i,3],3=1..n);

end do:
#Solving for [X].
X:=LinearSolve (A, RHS) ; )

1.

1.

X:= (3.2.1)
0.99999999999999988
| 1.00000000000000022 |

i > #Step 2: Generating the new, unbiased right hand side vector [RHS'] by adding a random +




value between -0.001*RHSJi] and +0.001*RHS[i] to create a small AC value.
for i from 1 by 1 to n do
Randomize () :
#Randomizing the sign of the value added to each element of new right hand side
vector.
roll:=rand(1l..2):
sign _val:=roll():
Randomize () :
RHS1[i] :=RHS[i]+(-1)*sign val*0.001*RHS[i]*rand () /1E12:
end do:
print ('RHS1'=RHS1) ; ) .
27.98543338

12.00126911
RHSI= (3.2.2)
70.98685772

| 212.2256756 |

> #Step 3: Calculating the new solution vector [X'].
X1:=LinearSolve (A,RHS1) ;

[0.999917419536820006 |
0.999225632902688288

X1 = (3.2.3)
1.00273101881558913

i | 0.998950772865370262 |
Notice the small difference between the values of the old and new right hand side vectors. Now
look at the new solution vector [X1]. Do the values deviate much from the old solution vector [X]
? If not, then any small changes that are made in the right hand side array do not affect the
accuracy of the solution vector, and the solution can therefore be trusted. Otherwise, the system
of equations is ill-conditioned. Below, the condition number of [A] is calculated by determining
the values required by Equation (3.2.B).
> #Calculating the relative change in the norm of the solution vector.

Num Cond:=Norm(X1-X,infinity)/Norm(X1l,infinity):

#Calculating the relative change in the norm of the right hand side array.

Den Cond:=Norm (RHS1-RHS,infinity) /Norm(RHS,infinity) :

#Calculating the condition number, using Equation (3.2.B).

Cond AA[k]:=Num Cond/Den Cond;

Cond_A4, = 3.232266237 (3.2.4)




V Method 3: A second technique in approximating the condition
number

The following numerical technique is simpler than Method 2 as it requires fewer calculations.
This method utilizes the theorem

Cond(A)> IA|lIX
Il

(3.3.A)

The proof is as follows:

Let
[X]=[A][C]

Applying norm properties, this equation becomes
X[ <lIA | Cll

Multiplying ||A|| to both sides gives
[AJIX]] < Cond(A) [|C]|

by the definition of condition number.
And division by ||C|| results in the final inequality.

In this technique, however, the right hand side values of [C] matrix are chosen to equal [+1, +1,
+1] with signs generated randomly. This will result in ||C|| = 1, minimizing the number of
calculations required to solve for Cond(4). Therefore, the calculation is reduced to:

Cond(A) >|Al IX]I. (3.3.B)

Again, the user should re-execute the worksheet to see if the greatest approximate condition
number approaches the exact condition number defined in Method 1.

> #Randomly choosing a (+1) or (-1) value for each element of the right hand side array.
for i from 1 by 1 to n do
Randomize () :
roll:=rand(1l..2):
sign_val:=roll():
Randomize () :
RHS[i] :=(-1)“*sign_val:
end do:
#Solving for the solution vector [X].
X:=LinearSolve (A,RHS) :
#Calculating the condition number using Equation (3.3.B).




Cond AAA:=Norm(A,infinity) *Norm(X,infinity)

Cond AAA :=41.01967884 (3.3.1)
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V¥ Conclusion
Maple helped us apply our knowledge of norms and condition numbers to quantify the accuracy in a
solution for a system of simultaneous linear equations.

Question 1: Choose a coefficient matrix [A] that is well-conditioned. For example,
Matrix([[10, =7,0], [ —3,2.099,61, [5, —1,5]])

10 —7 0
—3 2.099 6 (5.1)
5 -1 5

See how the condition number of the matrix affects the number of significant digits that one can trust
in solution.

Question 2: Choose a coefficient matrix [A] that is ill-conditioned. For example,
Matrix([[1,2,3], [1,2,3.001], [5,61,128]])

1 2 3
1 2 3.001 (5.2)
5 61 128

See how the condition number of the matrix affects the number of significant digits that one can trust
in solution.

Question 3: Choose the number of bits used for the mantissa in single and double precision. See how
these numbers affect the number of significant digits that one can trust in the solution.
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