Computational Time for Finding the Inverse of a Matrix: LU
Decomposition vs Naive Gaussian Elimination

© 2006 Kevin Martin, Autar Kaw, Jamie Trahan
University of South Florida
United States of America

kaw@eng.usf.edu

Introduction

This worksheet demonstrates the use of Maple to illustrate the computational time needed to find the
inverse of a matrix using two different methods: LU Decomposition and Naive Gaussian
Elimination. Although both methods have similarities, this worksheet will prove that one method is
computationally more efficient than the other.

V Section 1: Background: Inverse of a Matrix

How do I find the inverse of a matrix?

such that [A] [B] = [I] = [B]

[A], where [I], is an identity matrix. This implies that the j’h column [X] , of the inverse matrix

To find the inverse of a [A], , matrix, we need to find a matrix [B],

[B],, corresponds to the solution of [A][X] = [C], where [C] ., is the j’h column of the identity

| matrix.

V Section 2: Definitions

The execution time of a program depends on the number of floating-point operations (or FLOPs)
involved. Every computer has a processor speed which can be defined in FLOPs/sec. Knowing the
processor speed and how many FLOPs are needed to run a program gives us the computational time
required:

Time required (sec) = Number of FLOPs/Processor Speed (FLOPs/sec)

A supercomputer may be capable of 50x10'? (50 trillion) FLOPs per second, while a typical PC may
be capable of 10x10° (10 billion) FLOPs per second.

V Section 3: Computational methods of solving the equations

The problem of finding the inverse of a nxn [A] matrix reduces to solving n sets of equations with the
n columns of the identity matrix as the [RHS] vector. Complete details are given here.

The formulas that define the number of FLOPs required to find the inverse of a matrix using Naive
Gaussian Elimination and LU Decomposition are given below.

V¥ 3.1 Inverse using Naive Gaussian Elimination

To find the inverse of a nxn matrix, one can use the Naive Gaussian Elimination method. For
calculations of each column of the inverse of the matrix, the forward elimination and back
substitution needs to be done n times. Complete details of Naive Gauss Elimination are given

here.

Forward Elimination (FE): The FLOPs used in forward elimination for a set of n equations is
given by the series (Reference 2)

Sumln- (n+2)—k- 2 -n+2)+R k=1.(n—1))
n—1

S nm+2)y—k@n+2)+4) 4.1.1)
k=1
> FE NG:=sum('n* (n+2)-k* (2*n+2)+k*2', 'k'=l..n-1);
1 3,1 2 5

FE_NGZZEH +§n — " (4.1.2)

Back Substitution (BS): The FLOPs used in back substitution for a set of n equations is given by
the series (Reference 2)

Sum(i,i=1.n)
n

Z I (4.1.3)

i=1

> BS NG:=expand(sum('i',6 'i'=l..n));

BS NG =+ n? + % n (4.1.4)

N | —

The number of FLOPs required to find the inverse of the [A] matrix using Naive Gaussian
Elimination is: n*(FE+BS)

> NG_FLOP:=expand (n* (FE_NG+BS _NG)) ;
NG FLOP := % nt+n— % n (4.1.5)

V 3.2 Inverse using LU Decomposition

To find the inverse of a nxn matrix, one can use the LU Decomposition method. For calculations
of each column of the inverse of the matrix, the coefficient matrix in the set of equations does not
change. So if we use LU Decomposition method, the decomposition needs to be done only once,
and the forward substitution and back substitution needs to be done n times each. Complete

details are explained here.

Forward Elimination (FE): The FLOPs used in forward elimination to find the [L][U]
decomposition is (Reference 2)

Sumln- (n+2)—k- 2 -n+2)+R k=1.(n—1))
n—1

S nm+2)—k@n+2)+4) 42.1)
k=1
> FE LU:=sum('n* (n+2)-k* (2*n+2)+k*2', 'k'=l..n-1);
1 3 1 2 5
FE LU: 3" +) ¢ (4.2.2)

Forward Substitution (FS): The FLOPs used in forward substitution for a set of n equations is
given by the series (Reference 2)

Sum(i,i=1.n)

> 4.2.3)

i=1

> FS_LU:=expand(sum('i',6 'i'=l..n));
1 21
FS LU= < - 4.2.4

Backward Substitution (BS): The FLOPs used in back substitution for a set of n equations is given
by the series (Reference 2)
Sum(i,i=1.n)

D (4.2.5)

> BS LU:=expand(sum('i',6 'i'=l..n));
N S |
BS LU:) + 5 n (4.2.6)

The number of FLOPs required to find the inverse of the [A] matrix using LU Decomposition is:
(FE_LU+n*(FS_LU+BS_LU)

{> LU _FLOP:=expand (FE LU+n* (FS_LU+BS_LU)) ;
4.2.7)

u LU FLOP =313 23, 4.2.7)

3 2 6

V 3.3 Example

For a small square matrix, let us say n=10, the number of floating point operations using Naive
Gaussian Elimination is:

> subs (n=10,NG_FLOP) ;
4300 (4.3.1)

For the same size matrix, the number of floating point operations using LU Decomposition is:

> subs (n=10,LU_FLOP) ;
1475 (4.3.2)

For a matrix of this size, Naive Gaussian method requires nearly 3 (or approximately n/4 = 12/4 =
3) times more FLOPs than LU Decomposition method.

However, for a square matrix with an order of 100, one can see that although the order of the
matrix increases 10 fold, the number of FLOPs for Naive Gaussian Elimination requires nearly 25
(or approximately n/4 = 100/4 = 25) times more FLOPs than LU Decomposition method:

FLOPs for Naive Gauss given n=100:

> subs (n=100,NG_FLOP) ;
34330000 (4.3.3)

FLOPs for LU Decomposition given n=100:
> subs (n=100,LU_FLOP) ;
1348250 (4.3.4)

The plots that follow demonstrate the efficiency of using LU Decomposition over Naive Gaussian
Elimination.

V¥ Section 4: Comparison Plots

Below is a plot that shows the FLOPs required for finding the inverse of a matrix using the two
methods, as well as a plot for the ratio between the FLOPs required in the two methods.

> plot([NG_FLOP,LU FLOP],n=10..20,color=[red,blue], title=("FLOPs

for LU Decomposition and Gaussian Elimination versus Order of
the Matrix") ,titlefont=[HELVETICA,6BOLD] ,h axes=BOXED, labels=
["Order of Matrix","FLOPs"],legend=["Naive Gaussian Elimination
FLOPS" ,"LU Decomposition FLOPs"], thickness=2) ;

FLOPs for LU Decomposition and Gaussian Elimination versus Order of the

10*
6
4
FLOPs 1
21
E /
] 1 1] |]] 1] |] 1]] | 1]]]
10.0 12.5 15.0 17.5 20.0

Order of Matrix

Naive Gaussian Elimi...

LU Decomposition FLOPs

> plot([NG_FLOP/LU FLOP],n=10..100,color=[green],title=("Ratio of
Naive Gaussian Elimination FLOPs to LU Decomposition FLOPs"),
titlefont=[HELVETICA,BOLD],6 axes=BOXED, labels=["Order of Matrix",
"Ratio of FLOPs"],legend=["Ratio of FLOPs between Naive Gauss
and LU"], thickness=2) ;

\ 4

Ratio of Naive Gaussian Elimination FLOPs to LU Decomposition FLOPs

Ratio of FLOPs ~°]

20 40 60 80 10
Order of Matrix

Ratio of FLOPs betwe...

References
[1JAutar Kaw, Holistic Numerical Methods Institute, http://numericalmethods.eng.usf.edu/mws, See

Mhatisthe definition of the jnverse of a matrix?

UL ition Method

Naive G a0 Eliminati |

[2] Chapra, S.C. and Canale, R.F., "Numerical Methods for Engineers", 4th edition, McGraw-Hill,

- New York, 2002, pp. 242-243.

¥V Conclusion

Using Maple, we are able to show the computational efficiency of finding the inverse of a square
matrix using LU Decomposition method over Naive Gaussian Elimination method. LU
Decomposition method is n/4 times more efficient in finding the inverse than Naive Gaussian
Elimination method.

Question 1: Compare the time in seconds between the two methods to find the inverse of a

10000x10000 matrix on a typical PC with capability of 10x10°
FLOPs per second.

Question 2: Compare the time between the two methods to find the inverse of a 1000x1000 matrix on

a typical supercomputer with the capability of 50x10'2
FLOPs per second.

Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the
author are responsible for any errors contained within and are not liable for any damages resulting
from the use of this material. This application is intended for non-commercial, non-profit use only.
Contact the author for permission if you wish to use this application in for-profit activities.

