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NOTE: This worksheet demonstrates the use of Maple to show how the choice of points for 
interpolation affects the polynomial interpolation of a function.

Introduction
The following example illustrates the difference in interpolation curves due to the selection of 
points. In 1901, Carl Runge published his work on dangers of higher order interpolation. He took a 

simple looking function, 
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=  on the interval [-1,1].  He took points equidistantly 

spaced in [-1,1] and interpolated the points with polynomials.  He found that as he took more points, 
the polynomials and the original curve differed considerably. However, he also discovered that if he 
took data points close to the ends of the interval [-1,1], the problem of large differences between 
interpolated and actual values was less pronounced.  This simulation shows you this phenomena.
> restart;with(linalg):
Warning, the protected names norm and trace have been redefined and 
unprotected 

Section I : Data.
Let us first chose points which are equidistantly placed in [-1,1], and interpolate it. We will chose 
11 points, [-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1].

Runge's Function is given by:
> fRunge:=x->1/(1+25*x^2);

 := fRunge  → x
1

 + 1 25 x2

Plotting the data:
> plot(fRunge,-1..1,-1..1,thickness=2,title="Runge's function");



Section II: Polynomial Interpolation with equidistantly spaced points.
Let us now interpolate Runge's function using polynomial interpolation in [-1,1], choosing 11 
equidistantly spaced data points, [-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1]. This will give us a 
10th order polynomial.

> eq_poly:=interp([-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 
0.8, 
1],[fRunge(-1),fRunge(-0.8),fRunge(-0.6),fRunge(-0.4),fRunge(-0
.2),fRunge(0),fRunge(0.2),fRunge(0.4),fRunge(0.6),fRunge(0.8),f
Runge(1)],t);

eq_poly 220.9417439 t10 0.12 10-5 t9 1.000000000 494.9095054 t8 0.20 10-8 t−  −  +  +  −  := 

0.22 10-5 t7 16.85520363 t2 381.4338247 t6 0.11 10-6 t3 0.7 10-6 t5 123.3597288 t4 +  −  −  +  −  + 
.
We will now plot this function against Runge's function.

> eq_poly:=t->interp([-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 
0.6, 0.8, 
1],[fRunge(-1),fRunge(-0.8),fRunge(-0.6),fRunge(-0.4),fRunge(-0
.2),fRunge(0),fRunge(0.2),fRunge(0.4),fRunge(0.6),fRunge(0.8),f



Runge(1)],t):
> plot([fRunge,eq_poly],-1..1,-0.5..1,thickness=2,color=[red,gree

n],title="Plot of Runge's Function and Polynomial interpolated 
with equidistantly spaced points",legend=["Runge's 
function","Polynomial with equidistantly spaced points"]);

Section III: Polynomial with more points at the end.
The idea of this function is to place more points at the ends of the interval than in the middle. To 
do this, first the half interval from -1 to 1 is divided to give 'n' points in [-1,1] ( 'n' needs to be 
odd).  Then the number of divisions is (n-1), and the number of divisions are divided equally, that 
is (n-1)/2, between [-1,0] and [0,1].  For points from -1 to 0, starting with -1 as the first point, and 
assuming the next points are -1+ l, -1+2l, -1+4l, .......,0, where the distance between -1 and the 
next point is l, and the distance between consecutive points from -1 to 0 gets doubled after each 
point, the value of l is given by l=1/[2^{(n-1)/2}-1].  
The points from 0 to 1 are mirror images about the y-axis of points from -1 to 0.
> n:=11:
> Xb:=matrix(n,1,0): 

d:=0: 
for i from 2 to ((n-1)/2)+1 do 
d:=d+2^(i-2): 
end do: 
l:=1/d: 
Xb[1,1]:=-1: 
for i from 2 to ((n-1)/2)+1 do 



Xb[i,1]:=Xb[i-1,1]+2^(i-2)*l: 
end do: 
for i from (n-1)/2+2 to n do 
Xb[i,1]:=Xb[i-1,1]+(2^(n-i))*l: 
end do:

> Yb:=matrix(n,1,0): 
for i from 1 to n do 
Yb[i,1]:=fRunge(Xb[i,1]): 
end do:

When x and y data and order is given, the following constructs the matrix whose inverse is needed 
to find coefficients of the polynomial which approximates the data.
> A:=matrix(n,n,0): 

for i from 1 to n do 
for j from 1 to n do 
A[i,j]:=Xb[i,1]^(j-1): 
end do: 
end do:

This generates the coefficients for the polynomial that approximates the x and y data.
> M:=evalm(inverse(A) &* Yb):
When given the polynomial order and specific x, this procedure uses the above calculated 
coefficients to calculate the approximated f(x)
> f2:=proc(x) 

local i,c,d; 
c:=0: 
for i from 1 to n do 
d:=M[i,1]*x^(i-1)+c: 
c:=d: 
end do: 
d; 
end proc:

> plot([fRunge,f2],-1..1,-0.5..1,thickness=2,color=[RED,BLUE],tit
le="Runge's function and interpolated polynomial with more 
points near the ends of the interval [-1,1]",legend=["Runge's 
function","Polynomial with more points at the end"]);



> 

Section IV: Comparison.
Below is a plot to compare the polynomial obtained by interpolating using equidistantly placed data 
points and the polynomial obtained by interpolation using more data points near the end points of -1 
and 1.

> plot([fRunge,eq_poly,f2],-1..1,-0.5..1,thickness=2,color=[RED,G
REEN,BLUE],title="Runge's function and Interpolated polynomials 
with equidistant data points and with more data points near the 
ends of the interval [-1,1]",legend=["Runge's 
function","Polynomial with equidistantly spaced data 
points","Polynomial with more points at the end"]);



To better understand the difference between the polynomial obtained by interpolating with 
equidistantly spaced data points and the polynomial obtained by interpolating more data points at 
the end of the interval, let us find the value of these functions and the actual value from Runge's 
function for any x that is not specified, say, x = 0.5:

Value of the original function at x=0.5
> fRunge(0.5);

0.1379310345
Value of the polynomial interpolant at x=0.5 with equidistant points chosen for interpolation
> eq_poly(0.5);

0.2537554594
Value of the polynomial interpolant at x=0.5 with more points chosen close to the end points.
> f2(0.5);

0.1463771727

Section VI: Conclusion.

Maple helped us to apply our knowledge of numerical methods of interpolation to find a better 
interpolant for Runge's function by polynomial interpolation by choosing more data points at the 



end of the interval as opposed to using equidistantly spaced data points.   Although there is no rule 
for choosing points for interpolation for a better approximation, rules can be derived for particular 
functions (Davis, 1963; Kahaner, Moler and Nash, 1989)

Can you repeat the example by finding two polynomials choosing 21 points.  The points for the first 
polynomial are obtained by using equidistantly spaced points and the points for the second 
polynomial are obtained using points concentrated towards the end in [-1,1] domain.  Compare the 
results for the two polynomials for a value of x = -0.7?
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Disclaimer: While every effort has been made to validate the solutions in this worksheet, University of South Florida and the contributors 
are not responsible for any errors contained and are not liable for any damages resulting from the use of this material.


