

Finding the Shortest but Smooth Path for the Path of a Robot.

© 2003 Nathan Collier, Autar Kaw, Jai Paul , Michael Keteltas, University of South Florida ,
kaw@eng.usf.edu , http://numericalmethods.eng.usf.edu/mws

NOTE: This worksheet demonstrates the use of Maple for finding the shortest but smooth path for the
path of a robot in the area of manufacturing. It illustrates how spline interpolation can be used to

determine this path.

Introduction
The following example illustrates the real world use of interpolation to find the shortest but smooth
path of a robot. A robot arm equipped with a laser is doing a quick quality check of the radius on six
holes on a rectangular plate 15" x 10". The center locations of the six holes are given as (2, 7.2),
(4.25, 7.1), (5.25, 6), (7.81, 5), (9.2, 3.5), (10.6, 5). Find the shortest but smooth path for the robot
from the first to the last point.
> restart;

Section I : Data.
The following is the data (x-y) coordinate data of the center of the six holes.
> xy:=[[2,7.2],[4.25,7.1],[5.25,6],[7.81,5],[9.2,3.5],[10.6,5]]:

Plotting the data:
> plot(xy,x=0..12,y=0..8,style=POINT,symbol=CIRCLE,symbolsize=20,tit

le="Plot of the data points.");

Section II: Linear Splines.
Connecting the consecutive data points using linear splines will give the shortest path. However,
this path is not smooth as the derivatives will be discontinuous at the interior data points. However,
this will form a baseline for other calculations in the next two sections.

> linear_spline:=spline([2,4.25,5.25,7.81,9.2,10.6],[7.2,7.1,6,5,
3.5,5],x,linear);

 := linear_spline












 − 7.288888889 0.04444444444 x < x 4.25
 − 11.77500000 1.100000000 x < x 5.25
 − 8.050781250 0.3906250000 x < x 7.81
 − 13.42805755 1.079136691 x < x 9.2

− + 6.357142857 1.071428571 x otherwise

The length S of a curve 'y' from 'a' to 'b' is given by ∫ 





+=

b

a

dx
dx
dyS 1

2

.

> a:=2:
> b:=10.6:
The length of the linear spline, 'Slinear' is :
> Slinear:= int((1+diff(linear_spline,x)^2)^0.5,x=a..b);

 := Slinear 10.58405613

Section III: Polynomial Interpolation.
Since the robot has to pass through six data points, we can interpolate the data to a fifth order
polynomial. Since a fifth order polynomial has continuous first derivatives, the path given by the
polynomial would be smooth. The fifth order polynomial is,

> polynomial_function:=interp([2,4.25,5.25,7.81,9.2,10.6],[7.2,7.
1,6,5,3.5,5],x);

polynomial_function 41.34437571 x 30.89819894 15.85478362 x2 2.786231103 x3 − − + :=

0.2309138595 x4 0.007292341221 x5 − +
The length of the polynomial function, 'Spoly' is :

> Spoly:= int((1+diff(polynomial_function,x)^2)^0.5,x=a..b);

 := Spoly 13.12335423

Section IV: Spline Interpolation.
Clearly the length of the curve from the polynomial interpolation is larger than the length obtained
from linear spline interpolation. Let us use cubic spline interpolation. Since a cubic spline
interpolant has continuous first derivative, the path given by it would also be smooth.

> cubic_spline:=spline([2,4.25,5.25,7.81,9.2,10.6],[7.2,7.1,6,5,3
.5,5],x,cubic);

cubic_spline 6.412057670 0.393971164900000003 x + { :=

0.394745964311166748 10-15 () − x 2 2 0.0866006141700000066 () − x 2 3 − − < x 4.25,

11.01542157 0.921275662999999967 x 0.584554145698898852 ()− + 4.25 x 2 − −

0.405829808700000016 ()− + 4.25 x 3 + < x 5.25,

10.58269627 0.872894528300000028 x 0.632935280042843162 ()− + 5.25 x 2 − +

0.173651853599999989 ()− + 5.25 x 3 − < x 7.81,

13.17238603 1.04640025999999998 x 0.700710956330525270 ()− + 7.81 x 2 − −

0.487165155999999988 ()− + 7.81 x 3 + < x 9.2,

5.069716181 0.170621324000000019 x 1.33076774467731740 ()− + 9.2 x 2 − +

0.316849463100000006 ()− + 9.2 x 3 − otherwise,
The length of the cubic spline, 'Scubic' is :

> Scubic:= int((1+diff(cubic_spline,x)^2)^0.5,x=a..b);

 := Scubic 10.92884812

Section V: Comparison.
Below is a plot to compare the paths obtained using linear splines, polynomial function and cubic
spline :

> linear_spline:=x->spline([2,4.25,5.25,7.81,9.2,10.6],[7.2,7.1,6
,5,3.5,5],x,linear):

> polynomial_function:=x->interp([2,4.25,5.25,7.81,9.2,10.6],[7.2
,7.1,6,5,3.5,5],x):

> cubic_spline:=x->spline([2,4.25,5.25,7.81,9.2,10.6],[7.2,7.1,6,
5,3.5,5],x,cubic):

> plot([xy,linear_spline,polynomial_function,cubic_spline],2..10.
6,0..10,style=[POINT,LINE,LINE,LINE],symbol=CIRCLE,symbolsize=2
0,thickness=4,title="Comparison of Linear Spline, Polynomial
Function and Cubic
Spline.",color=[BLACK,RED,GREEN,BLUE],legend=["Center of
Holes","Linear Spline Interpolation Path", "Polynomial
Interpolation Path","Cubic Spline Interpolation Path"]);

>
>
>

Section VI: Conclusion.

Maple helped us to apply our knowledge of numerical methods of interpolation to find the shortest
but smooth path of the robot. Using Maple functions and plotting routines made it easy to find a
solution efficiently.

Can you check the length of the path by using Quadratic Splines? Is the path shorter than what we
obtained using cubic splines and fifth order polynomial interpolation?

References
[1] Autar Kaw and Michael Keteltas, Holistic Numerical Methods Institute, See
http://numericalmethods.eng.usf.edu/mws/ind/05inp/mws_ind_inp_spe_shortestpath.pdf

Disclaimer: While every effort has been made to validate the solutions in this worksheet, University of South Florida and
the contributors are not responsible for any errors contained and are not liable for any damages resulting from the use of this
material.

