

Spline Method of Interpolation--Simulation

© 2003 Nathan Collier, Autar Kaw, Jai Paul , Michael Keteltas, University of South Florida ,
kaw@eng.usf.edu , http://numericalmethods.eng.usf.edu/mws

NOTE: This worksheet demonstrates the use of Maple to illustrate the spline method of interpolation.
We limit this worksheet to linear and quadratic spline interpolation.

Introduction
The Spline method of interpolation (for detailed explanation, you can read the textbook notes and
examples, and see a Power Point Presentation) is illustrated. Given 'n' data points of 'y' versus 'x', it
is required to find the value of y at a particular value of x using linear and quadratic splines.

> restart;
> with(LinearAlgebra):

with(linalg):
Warning, the previous binding of the name GramSchmidt has been removed and it
now has an assigned value

Warning, the protected names norm and trace have been redefined and
unprotected

Section I : Data.
The following is the array of x-y data which is used to interpolate. It is obtained from the physical
problem of velocity of rocket (y-values) vs. time (x-values) data. We are asked to find the
velocity at an intermediate point of x=16.
> xy:=[[10,227.04],[0,0],[20,517.35],[15,362.78],[30,901.67],[22.

5,602.97]]:
Value of x at which y is desired
> xdesired:=16:

Section II : Big scary functions.

This function will sort the data matrix into ascending order and puts them into a new matrix.

> n:=rowdim(xy):
> for passnum from 1 to n-1 do

 for i from 1 to n-passnum do
 if xy[i,1]>xy[i+1,1] then
 temp1:=xy[i,1];
 temp2:=xy[i,2];

 xy[i,1]:=xy[i+1,1];
 xy[i,2]:=xy[i+1,2];
 xy[i+1,1]:=temp1;
 xy[i+1,2]:=temp2;
 end if:
 end do:
end do:

> x:=matrix(n,1):
y:=matrix(n,1):
for i from 1 to n do
x[i,1]:=xy[i,1];
y[i,1]:=xy[i,2];
end do:

> ranger:=proc(ar,n)
local i,xmin,xmax,xrange;
xmin:=ar[1,1]:
xmax:=ar[1,1]:
for i from 1 to n do
if ar[i,1] > xmax then xmax:=ar[i,1] end if;
if ar[i,1] < xmin then xmin:=ar[i,1] end if;
end do;
xrange:=xmin..xmax;
end proc:

Plotting the given values of X and Y.

> plot(xy,ranger(x,n),style=POINT,color=BLUE,symbol=CIRCLE,symbol
size=30);

>

Section III: Linear spline interpolation
Given () () ()()nnnn yxyxyxyx ,,,......,,,, 111100 −− , fit linear splines to the data. This simply involves
forming the consecutive data through straight lines. So the data is sorted into an ascending order;
the linear splines are given by ())(ii xfy =

),()()()()(0
01

01
0 xx

xx
xfxfxfxf −

−
−

+= 10 xxx ≤≤

),()()()(1
12

12
1 xx

xx
xfxfxf −

−
−

+= 21 xxx ≤≤

),()()()(1
1

1
1 −

−

−
− −

−
−

+= n
nn

nn
n xx

xx
xfxfxf nn xxx ≤≤−1

> flinear:=proc(z)
local d,i;
if z < x[2,1] then
d:=y[2,1]+(y[2,1]-y[1,1])/(x[2,1]-x[1,1])*(z-x[2,1]);
else
for i from 2 to n do
 if (z > x[i,1]) and (z <= x[i+1,1]) then
 d:=y[i,1]+(y[i+1,1]-y[i,1])/(x[i+1,1]-x[i,1])*(z-x[i,1]);
 end if;
end do;

end if;
d;
end proc:

Value of function at desired value of X is

> flinear(xdesired);

393.6940000
> fprev:=%:
Plotting the linear spline interpolant and the value of Y for the desired X
> plot([xy,[[xdesired,flinear(xdesired)]],flinear],ranger(x,n),st

yle=[POINT,POINT,LINE],color=[BLUE,RED,BLACK],symbol=[CIRCLE,CR
OSS],symbolsize=[30,40],thickness=2,title="Linear spline
interpolation");

Section IV: Quadratic interpolation
In these splines, a quadratic polynomial approximates the data between two consecutive data
points. Given () () () ()nnnn yxyxyxyx ,,,,......,,,, 111100 −− , fit quadratic splines through the data. The
splines are given by
 ,)(11

2
1 cxbxaxf ++= 10 xxx ≤≤

 ,22
2

2 cxbxa ++= 21 xxx ≤≤

 ,2

nnn cxbxa ++= nn xxx ≤≤−1
There are 3n such coefficients ,ia =i 1, 2, …, n; ,ib =i 1, 2, …, n; ,ic =i 1, 2, …, n
To find '3n' unknowns, one needs to set up '3n' equations and then simultaneously solve them.
To know more about how to setup these '3n' equations, please click on textbook notes. After
setting up these equations, they are solved using the matrix method. The following function
assembles the matrix whose inverse is needed to solve for the coefficients of the polynomial
splines that fits the data.
> A:=matrix(3*(n-1),3*(n-1),0):
> for i from 0 to 3*(n-1)-1 do

 for j from 0 to 3*(n-1)-1 do
 A[i+1,j+1]:=0;
 end do;
end do;

for i from 1 to n-1 do
 for j from 0 to 1 do
 for k from 0 to 2 do
 A[2*i-1+j+1,3*i-3+k+1]:=x[i+j,1]^k;
 end do;
 end do;
end do;

for i from 1 to n-2 do
 for j from 0 to 1 do
 for k from 0 to 1 do
 A[2*(n-1)+i+1,3*i-2+k+j*3+1]:=(-1)^j*(2*x[i+1,1])^k;
 end do;
 end do;
end do;

A[1,3]:=1:

The following gives the matrix which is required to solve for the coefficients of the quadratic
splines

evalm(A);

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 10 100 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 10 100 0 0 0 0 0 0 0 0 0
0 0 0 1 15 225 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 15 225 0 0 0 0 0 0
0 0 0 0 0 0 1 20 400 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 20 400 0 0 0
0 0 0 0 0 0 0 0 0 1. 22.5 506.25 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1. 22.5 506.25
0 0 0 0 0 0 0 0 0 0 0 0 1 30 900
0 1 20 0 -1 -20 0 0 0 0 0 0 0 0 0
0 0 0 0 1 30 0 -1 -30 0 0 0 0 0 0
0 0 0 0 0 0 0 1 40 0 -1 -40 0 0 0
0 0 0 0 0 0 0 0 0 0 1. 45.0 0 -1. -45.0

This assembles the Y matrix also needed to determine the coefficients of the quadratic splines.

> Y:=matrix(3*(n-1),1,0):
for i from 0 to n-2 do
for j from 0 to 1 do
Y[2*(i+1)+j,1]:=y[i+j+1,1];
end do;
end do;
evalm(Y);

0
0

227.04
227.04
362.78
362.78
517.35
517.35
602.97
602.97
901.67

0
0
0
0

Solving for the coefficients, we get

> C:=evalm(inverse(A) &* Y);

 := C

0.
22.70400000

0.1054334397 10-13

88.880000
4.9280000
0.88880000
-141.610000
35.6600000
-0.13560000
554.55000
-33.956000
1.60480000

-152.13
28.8600000
0.20888888

> fquad:=proc(z)
local d,i,j:
if z <= x[2,1] then
 d:=C[1,1]+C[2,1]*z+C[3,1]*z^2:
else
 for i from 2 to n-1 do
 if z <= x[i+1,1] and z > x[i,1] then
 d:=0:
 for j from 0 to 2 do
 d:=d+C[3*(i-1)+j+1,1]*z^j:
 end do:
 end if:
 end do:
end if:
d;
end proc:

Value of function at desired value of X is

> fquad(xdesired);

394.2364000
Plotting the quadratic spline interpolant and the value of Y for the desired X

> plot([xy,[[xdesired,fquad(xdesired)]],fquad],ranger(x,n),style=
[POINT,POINT,LINE],color=[BLUE,RED,BLACK],symbol=[CIRCLE,CROSS]
,symbolsize=[30,40],thickness=2,title="Quadratic spline
interpolation");

Section V: Cubic spline interpolation
The algorithm of cubic spline interpolation is not shown. However, we are using the Maple
function to conduct the cubic spline interpolation,

> fcubic:=t->spline(convert(x,vector),convert(y,vector),t,cubic):

Computing the value of the function at the desired value of X,
> fcubic(xdesired);

392.1542016
Plotting the cubic spline interpolant and the value of Y at the desired calue of X,

> plot([xy,[[xdesired,fcubic(xdesired)]],fcubic],ranger(x,n),styl
e=[POINT,POINT,LINE],color=[BLUE,RED,BLACK],symbol=[CIRCLE,CROS
S],symbolsize=[30,40],thickness=2,title="Cubic spline
interpolation");

>

Section VI: Conclusion.

Maple helped us to apply our knowledge of numerical methods of interpolation to find the value of
y at a particular value of x using linear and quadratic spline interpolation. Using Maple functions
and plotting routines made it easy to illustrate this method.

References
[1] Nathan Collier, Autar Kaw, Jai Paul , Michael Keteltas, Holistic Numerical Methods Institute, See
http://numericalmethods.eng.usf.edu/mws/gen/05inp/mws_gen_inp_sim_spline.mws
http://numericalmethods.eng.usf.edu/mws/gen/05inp/mws_gen_inp_txt_spline.pdf

Disclaimer: While every effort has been made to validate the solutions in this worksheet, University of South Florida and
the contributors are not responsible for any errors contained and are not liable for any damages resulting from the use of this
material.

