Chapter 04.06 Gaussian Elimination – More Examples Chemical Engineering

Example 1

A liquid-liquid extraction process conducted in the Electrochemical Materials Laboratory involved the extraction of nickel from the aqueous phase into an organic phase. A typical set of experimental data from the laboratory is given below.

	0		
Ni aqueous phase, a (g/l)	2	2.5	3
Ni organic phase, g (g/l)	8.57	10	12

Assuming g is the amount of Ni in the organic phase and a is the amount of Ni in the aqueous phase, the quadratic interpolant that estimates g is given by

 $g = x_1 a^2 + x_2 a + x_3, \ 2 \le a \le 3$

The solution for the unknowns x_1 , x_2 , and x_3 is given by

4	2	1	$\begin{bmatrix} x_1 \end{bmatrix}$		[8.57]
6.25	2.5	1	x_2	=	10
9	3	1	$\lfloor x_3 \rfloor$		12

Find the values of x_1 , x_2 , and x_3 using naïve Gauss elimination. Estimate the amount of nickel in the organic phase when 2.3 g/l is in the aqueous phase using quadratic interpolation.

Solution

Forward Elimination of Unknowns

Since there are three equations, there will be two steps of forward elimination of unknowns.

First step

Divide Row 1 by 4 and then multiply it by 6.25, that is, multiply Row 1 by 6.25/4 = 1.5625. Row $1 \times (1.5625) = [6.25 \quad 3.125 \quad 1.5625]$ [13.391]

Subtract the result from Row 2 to get

 $\begin{bmatrix} 4 & 2 & 1 \\ 0 & -0.625 & -0.5625 \\ 9 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8.57 \\ -3.3906 \\ 12 \end{bmatrix}$

Divide Row 1 by 4 and then multiply it by 9, that is, multiply Row 1 by 9/4 = 2.25. Row $1 \times (2.25) = \begin{bmatrix} 9 & 4.5 & 2.25 \end{bmatrix}$ [19.283] Subtract the result from Row 3 to get

$$\begin{bmatrix} 4 & 2 & 1 \\ 0 & -0.625 & -0.5625 \\ 0 & -1.5 & -1.25 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8.57 \\ -3.3906 \\ -7.2825 \end{bmatrix}$$

Second step

We now divide Row 2 by -0.625 and then multiply it by -1.5, that is, multiply Row 2 by -1.5/-0.625 = 2.4.

Row
$$2 \times (2.4) = \begin{bmatrix} 0 & -1.5 & -1.35 \end{bmatrix}$$
 $\begin{bmatrix} -8.1375 \end{bmatrix}$
Subtract the result from Row 3 to get

$$\begin{bmatrix} 4 & 2 & 1 \\ 0 & -0.625 & -0.5625 \\ 0 & 0 & 0.1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8.57 \\ -3.3906 \\ 0.855 \end{bmatrix}$$

Back Substitution

From the third equation,

$$0.1x_3 = 0.855$$
$$x_3 = \frac{0.855}{0.1}$$
$$= 8.55$$

Substituting the value of x_3 in the second equation,

$$(-0.625)x_{2} + (-0.5625)x_{3} = -3.3906$$
$$x_{2} = \frac{-3.3906 - (-0.5625)x_{3}}{-0.625}$$
$$= \frac{-3.3906 - (-0.5625) \times 8.55}{-0.625}$$
$$= -2.27$$

Substituting the values of x_2 and x_3 in the first equation,

$$4x_1 + 2x_2 + x_3 = 8.57$$
$$x_1 = \frac{8.57 - 2x_2 - x_3}{4}$$
$$= \frac{8.57 - 2 \times (-2.27) - 8.55}{4}$$
$$= 1.14$$

Hence the solution vector is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1.14 \\ -2.27 \\ 8.55 \end{bmatrix}$$

The polynomial that passes through the three data points is then

$$g(a) = x_1 a^2 + x_2 a + x_3$$

$$= 1.14a^2 + (-2.27)a + 8.55$$

where g is the amount of nickel in the organic phase and a is the amount of nickel in the aqueous phase.

When 2.3g/l is in the aqueous phase, using quadratic interpolation, the estimated amount of nickel in the organic phase is

$$g(2.3) = 1.14 \times (2.3)^2 + (-2.27) \times (2.3) + 8.55$$

= 9.3596 g/l

SIMULTANEOUS LINEAR EQUATIONS		
Topic	Gaussian Elimination – More Examples	
Summary	Examples of Gaussian elimination	
Major	Chemical Engineering	
Authors	Autar Kaw	
Date	August 8, 2009	
Web Site	http://numericalmethods.eng.usf.edu	