Chapter 04.06 Gaussian Elimination – More Examples Computer Engineering

Example 1

To infer the surface shape of an object from images taken of a surface from three different directions, one needs to solve the following set of equations.

0.2425	0	-0.9701	$\begin{bmatrix} x_1 \end{bmatrix}$		[247]	
0	0.2425	- 0.9701	x_2	=	248	
- 0.2357	-0.2357	- 0.9428	x_3		239	

The right hand side values are the light intensities from the middle of the images, while the coefficient matrix is dependent on the light source directions with respect to the camera. The unknowns are the incident intensities that will determine the shape of the object.

Find the values of x_1 , x_2 , and x_3 using naïve Gauss elimination.

Solution

Forward Elimination of Unknowns

Since there are three equations, there will be two steps of forward elimination of unknowns.

First step

Divide Row 1 by 0.2425 and then multiply it by 0, that is, multiply Row 1 by 0/0.2425 = 0.

Row 1×(0) = $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 \end{bmatrix}$ Subtract the result from Row 2 to get $\begin{bmatrix} 0.2425 & 0 & -0.9701 \\ 0 & 0.2425 & -0.9701 \\ -0.2357 & -0.2357 & -0.9428 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 247 \\ 248 \\ 239 \end{bmatrix}$

Divide Row 1 by 0.2425 and then multiply it by -0.2357, that is, multiply Row 1 by -0.2357/0.2425 = -0.97196.

Row $1 \times (-0.97196) = [-0.2357 \ 0 \ 0.094290] [-240.07]$ Subtract the result from Row 3 to get

0.2425	0	-0.9701	x_1		247	
0	0.2425	-0.9701	<i>x</i> ₂	=	248	
0	-0.2357	-1.8857	$\lfloor x_3 \rfloor$		479.07	

Second step

We now divide Row 2 by 0.2425 and then multiply by -0.2357, that is, multiply Row 2 by -0.2357/0.2425 = -0.97196.

Row $2 \times (-0.97196) = [0 - 0.2357 \ 0.94290] [-241.05]$ Subtract the result from Row 3 to get

$$\begin{bmatrix} 0.2425 & 0 & -0.9701 \\ 0 & 0.2425 & -0.9701 \\ 0 & 0 & -2.8286 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 247 \\ 248 \\ 720.12 \end{bmatrix}$$

Back substitution

From the third equation,

$$-2.8286x_3 = 720.12$$
$$x_3 = \frac{720.12}{-2.8286}$$
$$= -254.59$$

Substituting the value of x_3 in the second equation,

$$0.2425 x_{2} + (-0.9701)x_{3} = 248$$
$$x_{2} = \frac{248 - (-0.9701)x_{3}}{0.2425}$$
$$= \frac{248 - (-0.9701) \times (-254.59)}{0.2425}$$
$$= 4.2328$$

Substituting the values of x_2 and x_3 in the first equation,

$$0.2425x_{1} + 0x_{2} + (-0.9701)x_{3} = 247$$

$$x_{1} = \frac{247 - 0x_{2} - (-0.9701)x_{3}}{0.2425}$$

$$= \frac{247 - (-0.9701) \times (-254.59)}{0.2425}$$

$$= 0.10905$$
Hence the solution vector is
$$\begin{bmatrix} x_{1} \end{bmatrix} \begin{bmatrix} 0.10905 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.10905 \\ 4.2328 \\ -254.59 \end{bmatrix}$$

SIMULTANEOUS LINEAR EQUATIONS				
Topic	Gaussian Elimination – More Examples			
Summary	Examples of Gaussian elimination			
Major	Computer Engineering			
Authors	Autar Kaw			
Date	August 8, 2009			
Web Site	http://numericalmethods.eng.usf.edu			
web Site	<u>hup.//humericamethous.eng.usi.euu</u>			