
 
 
 
 
 

Chapter 03.03 
Bisection Method of Solving a Nonlinear Equation-
More Examples 
Mechanical Engineering 
 
 
Example 1 

A trunnion has to be cooled before it is shrink fitted into a steel hub.  
 

 
Figure 1  Trunnion to be slid through the hub after contracting. 

 
The equation that gives the temperature  to which the trunnion has to be cooled to obtain 

the desired contraction is given by 
fT
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fTUse the bisection method of finding roots of equations to find the temperature  to which 

the trunnion has to be cooled. Conduct three iterations to estimate the root of the above 
equation. Find the absolute relative approximate error at the end of each iteration and the 
number of significant digits at least correct at the end of each iteration. 
 

Solution 

From the designer’s records for the previous bridge, the temperature to which the trunnion 
was cooled was . Hence assuming the temperature to be between and  F108 F100

F150 , we have 

F150, fT ,  F100, ufT

Check if the function changes sign between  and . ,fT ufT ,
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So there is at least one root between  and  that is between ,fT ufT , 150  and . 100

Iteration 1 
The estimate of the root is 
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Hence the root is bracketed between  and , that is, between ,fT mfT , 150  and .  125
So, the lower and upper limits of the new bracket are 

125,150 ,,  uff TT   

At this point, the absolute relative approximate error a  cannot be calculated, as we do not 

have a previous approximation. 
Iteration 2 
The estimate of the root is 
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410  5.3762 = 
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Hence, the root is bracketed between  and , that is, between mfT , ufT , 125  and .   5.137
So the lower and upper limits of the new bracket are 
  125,5.137 ,,  uff TT 

The absolute relative approximate error a  at the end of Iteration 2 is 
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None of the significant digits are at least correct in the estimated root of 

5.137, mfT  

as the absolute relative approximate error is greater that . %5

Iteration 3 
The estimate of the root is 
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Hence, the root is bracketed between  and , that is, between ,fT mfT , 125  and .   25.131
So the lower and upper limits of the new bracket are 
  125,25.131 ,,  uff TT 

The absolute relative approximate error a  at the ends of Iteration 3 is 
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The number of significant digits at least correct is 1. 
Seven more iterations were conducted and these iterations are shown in the Table 1 below. 
 

Table 1 Root of  as function of number of iterations for bisection method.   0xf

Iteration   ,fT ufT , mfT ,   %a
mfTf ,  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

−150 
−150 
−137.5 
−131.25 
−131.25 
−129.69 
−128.91 
−128.91 
−128.91 
−128.81 

−100 
−125 
−125 
−125 
−128.13 
−123.13 
−123.13 
−128.52 
−128.71 
−128.71 

−125 
−137.5 
−131.25 
−128.13 
−129.69 
−128.91 
−128.52 
−128.71 
−128.81 
−128.76 

--------- 
9.0909 
4.7619 
2.4390 
1.2048 
0.60606 
0.30395 
0.15175 
0.075815
0.037922

    4102.3356 
4105.3762 
4101.5430 
5103.9065 
5105.7760 
6109.3826 
510
6102.7228 
6103.3305 
7103.0396 

 
 

    
 
 

   1.4838  
    

 
  

 
At the end of the  iteration, th10
 %037922.0a  

Hence, the number of significant digits at least correct is given by the largest value of  for 
which 

m

 m
a

 2105.0  

 m 2105.0037922.0  
 m 210075844.0  
    m 2075844.0log

    1201.3075844.0log2 m
So 

3m  
The number of significant digits at least correct in the estimated root of 76.128  is 3. 
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