Chapter 04.07 LU Decomposition – More Examples Mechanical Engineering

Example 1

A trunnion of diameter 12.363" has to be cooled from a room temperature of 80°F before it is shrink fitted into a steel hub (Figure 1).

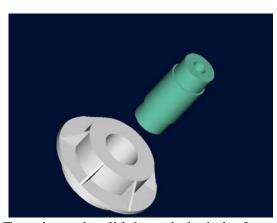


Figure 1 Trunnion to be slid through the hub after contracting.

The equation that gives the diametric contraction ΔD of the trunnion in a dry-ice/alcohol mixture (boiling temperature is -108 °F) is given by

$$\Delta D = 12.363 \int_{80}^{-108} \alpha(T) dT$$

The equation for the thermal expansion coefficient, $\alpha = a_1 + a_2T + a_3T^2$, is obtained using regression analysis where the constants of the model are found by solving the following simultaneous linear equations.

Transfords finear equations:
$$\begin{bmatrix} 24 & -2860 & 7.26 \times 10^5 \\ -2860 & 7.26 \times 10^5 & -1.86472 \times 10^8 \\ 7.26 \times 10^5 & -1.86472 \times 10^8 & 5.24357 \times 10^{10} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1.057 \times 10^{-4} \\ -1.04162 \times 10^{-2} \\ 2.56799 \end{bmatrix}$$

Find the values of a_1 , a_2 , and a_3 using LU decomposition.

04.07.2 Chapter 04.07

Solution

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

The [U] matrix is the same as the one found at the end of the forward elimination steps of the naïve Gauss elimination method.

Forward Elimination of Unknowns

Since there are three equations, there will be two steps of forward elimination of unknowns.

$$\begin{bmatrix} 24 & -2860 & 7.26 \times 10^5 \\ -2860 & 7.26 \times 10^5 & -1.86472 \times 10^8 \\ 7.26 \times 10^5 & -1.86472 \times 10^8 & 5.24357 \times 10^{10} \end{bmatrix}$$

First step

Divide Row 1 by 24 and multiply it by -2860, that is, multiply it by -2860/24 = -119.17. Then subtract the result from Row 2.

$$\operatorname{Row} 2 - (\operatorname{Row} 1 \times (-119.17)) = \begin{bmatrix} 24 & -2860 & 7.26 \times 10^5 \\ 0 & 3.8518 \times 10^5 & -99.957 \times 10^6 \\ 7.26 \times 10^5 & -1.8647 \times 10^8 & 5.2436 \times 10^{10} \end{bmatrix}$$

Divide Row 1 by 24 and multiply it by 7.26×10^5 , that is, multiply it by $7.26 \times 10^5 / 24 = 30250$. Then subtract the result from Row 3.

$$Row 3 - (Row 1 \times 30250) = \begin{bmatrix} 24 & -2860 & 7.26 \times 10^5 \\ 0 & 3.8518 \times 10^5 & -99.957 \times 10^6 \\ 0 & -99.957 \times 10^6 & 30.474 \times 10^9 \end{bmatrix}$$

Second step

We now divide Row 2 by 3.8518×10^5 and multiply it by -99.957×10^6 , that is, multiply it by $-99.957\times10^6/3.8518\times10^5 = -259.50$. Then subtract the result from Row 3.

$$Row 3 - (Row 2 \times (-259.50)) = \begin{bmatrix} 24 & -2860 & 7.26 \times 10^5 \\ 0 & 3.8518 \times 10^5 & -99.957 \times 10^6 \\ 0 & 0 & 4.5349 \times 10^9 \end{bmatrix}$$
$$\begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} 24 & -2860 & 7.26 \times 10^5 \\ 0 & 3.8518 \times 10^5 & -99.957 \times 10^6 \\ 0 & 0 & 4.5349 \times 10^9 \end{bmatrix}$$

Now find [L].

$$[L] = \begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}$$

From the first step of forward elimination,

$$\ell_{21} = \frac{-2860}{24} = -119.17$$

$$\ell_{31} = \frac{7.26 \times 10^5}{24} = 30250$$

From the second step of forward elimination,

$$\ell_{32} = \frac{-99.957 \times 10^6}{3.8518 \times 10^5} = -259.50$$

$$[L] = \begin{bmatrix} 1 & 0 & 0 \\ -119.17 & 1 & 0 \\ 30250 & -259.50 & 1 \end{bmatrix}$$

Now that [L] and [U] are known, solve [L][Z] = [C].

$$\begin{bmatrix} 1 & 0 & 0 \\ -119.17 & 1 & 0 \\ 30250 & -259.50 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} 1.057 \times 10^{-4} \\ -1.04162 \times 10^{-2} \\ 2.56799 \end{bmatrix}$$

gives

$$z_1 = 1.057 \times 10^{-4}$$

-119.17 $z_1 + z_2 = -1.04162 \times 10^{-2}$
30250 $z_1 + (-259.50) + z_3 = 2.56799$

Forward substitution starting from the first equation gives

$$\begin{split} z_1 &= 1.057 \times 10^{-4} \\ z_2 &= -1.04162 \times 10^{-2} - (-119.17)z_1 \\ &= -1.04162 \times 10^{-2} - (-119.17) \times 1.057 \times 10^{-4} \\ &= 0.0021797 \\ z_3 &= 2.56799 - 30250z_1 - (-259.50)z_2 \\ &= 2.56799 - 30250 \times 1.057 \times 10^{-4} - (-259.50) \times 0.0021797 \\ &= -0.063788 \end{split}$$

Hence

$$[Z] = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} 1.057 \times 10^{-4} \\ 0.0021797 \\ -0.063788 \end{bmatrix}$$

Now solve

$$\begin{bmatrix} U & A \end{bmatrix} = \begin{bmatrix} Z \end{bmatrix}$$

$$\begin{bmatrix} 24 & -2860 & 7.26 \times 10^5 \\ 0 & 3.8518 \times 10^5 & -99.957 \times 10^6 \\ 0 & 0 & 4.5349 \times 10^9 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1.057 \times 10^{-4} \\ 0.0021797 \\ -0.063788 \end{bmatrix}$$

$$24a_1 + (-2860)a_2 + 7.26 \times 10^5 a_3 = 1.057 \times 10^{-4}$$

04.07.4 Chapter 04.07

$$3.8518 \times 10^5 a_2 + (-99.957 \times 10^6) a_3 = 0.0021797$$

 $4.5349 \times 10^9 a_3 = -0.063788$

From the third equation,

$$4.5349 \times 10^9 a_3 = -0.063788$$
$$a_3 = \frac{-0.063788}{4.5349 \times 10^9}$$

Substituting the value of a_3 in the second equation,

$$3.8518 \times 10^{5} a_{2} + (-99.957 \times 10^{6}) a_{3} = 0.0021797$$

$$a_{2} = \frac{0.0021797 - (-99.957 \times 10^{6}) a_{3}}{3.8518 \times 10^{5}}$$

$$= \frac{0.00217975 - (-99.957 \times 10^{6}) \times (-1.4066 \times 10^{-11})}{3.8518 \times 10^{5}}$$

$$= 2.0087 \times 10^{-9}$$

Substituting the value of a_2 and a_3 in the first equation,

$$\begin{aligned} 24a_1 + & (-2860)a_2 + 7.26 \times 10^5 \, a_3 = 1.057 \times 10^{-4} \\ a_1 &= \frac{1.057 \times 10^{-4} - (-2860)a_2 - 7.26 \times 10^5 \, a_3}{24} \\ &= \frac{1.057 \times 10^{-4} - \left(-2860\right) \times 2.0087 \times 10^{-9} - 7.26 \times 10^5 \times \left(-1.4066 \times 10^{-11}\right)}{24} \\ &= 5.0690 \times 10^{-6} \end{aligned}$$

The solution vector is

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 5.0690 \times 10^{-6} \\ 2.0087 \times 10^{-9} \\ -1.4066 \times 10^{-11} \end{bmatrix}$$

SIMULTANEOUS LINEAR EQUATIONS	
Topic	LU Decomposition – More Examples
Summary	Examples of LU decomposition
Major	Mechanical Engineering
Authors	Autar Kaw
Date	August 8, 2009
Web Site	http://numericalmethods.eng.usf.edu