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Chapter 11.00C 
Physical Problem for Fast Fourier Transform
Civil Engineering
Introduction

In this chapter, applications of FFT algorithms [1-5] for solving real-life problems such as computing the dynamical (displacement) response [6-7] of single degree of freedom (SDOF) water tower structure will be demonstrated.

Free Vibration Response of Single Degree-Of- Freedom, (SDOF) Systems
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	Figure 1 SDOF dynamic (water tower structure) system.
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	Figure 2 Water tower structure subjected to dynamic loads.


a) Water tower structure, Idealized as SDOF system.

b) Impulse blast loading 
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The dynamical equilibrium for a SDOF system (shown in Figure 1) can be given as:
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where
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mass, damping and spring stiffness, respectively (which are related to inertia, damping and spring forces, respectively).
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Practical structural models such as the water tower structure subjected to applied blast loading (or earthquake ground acceleration) etc. can be conveniently modeled and studied as a simple SDOF system (shown in Figure 2).
For free vibration response, Equation (1) simplifies to
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The solution (displacement response 
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) of Equation (2) can be expressed as
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Substituting Equations (3-5) into Equation (2), one obtains
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The two roots of the above quadratic equation can be obtained as
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Critical Damping
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In this case, the term under the square root in Equation (8) is set to be zero, hence
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or
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since 
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Hence
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The two identical roots of Equation (8) can be computed as
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and the solution 
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which can be plotted as shown in Figure 3.
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	Figure 3 Free vibration with critical damping.


Over damping 
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In this case, one has
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The solution of 
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The response of over damping system is similar to Figure 3.
Under Damping 
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and the two “complex” roots from Equation (8) can be given as
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Substituting Equation (19), and using Euler’s equation 
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where
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Using the initial conditions:
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Then, the two constants (
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 and 
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) can be solved, and Equation (20) becomes
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Equation (11.216) can also be expressed as:
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where
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Equation (26) can be plotted as shown in Figure 4.
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 Figure 4 Free vibration of SDOF under damped system.


Force Vibration Response of SDOF Systems
For force vibration problem, the right-hand-side (RHS) of Equation (1) 
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where the complimentary solution 
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Using Equations (10) and (11), Equation (30) becomes
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Using Equation (23), the above equation becomes
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The particular solution 
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The unknown constants 
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 can be found by substituting Equation (32) into Equation (1), and equating the coefficients of the sine and cosine functions.

Using Euler’s identity, one has
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Thus, the RHS of Equation (1) can be expressed as
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Hence, the response will consist of ONLY the imaginary portion of Equation (29).
The particular solution 
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Substituting Equation (35) into Equation (34), one gets
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or
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Hence
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Substituting Equation (38) into Equation (35), one obtains
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In Equation (39), the “complex” number
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can be symbolically expressed as
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or in polar coordinates, one has (see Figure 5)


[image: image75.wmf]{

}

)

sin(

)

cos(

q

q

q

i

d

e

d

d

i

+

´

=

=






                       (42)


[image: image76.wmf])

cos(

)

sin(

)

tan(

q

q

q

º







                       
           (43)
           
[image: image77.wmf]2

w

m

k

w

c

-

=


where

[image: image78.wmf]2

w

m

k

d

R

-

=










           (44)


[image: image79.wmf]w

c

d

I

=










           (45)

[image: image80.wmf](

)

(

)

2

2

I

R

d

d

d

+

=









           (46)

         
[image: image81.wmf](

)

2

2

2

)

(

w

c

w

m

k

+

-

=






                       (47)

Thus, Equation (39) can be re-written as:
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	Figure 5 Polar coordinates.


The “imaginary” portion of Equation (49) can be given as
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Define
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Then, Equations (43) and (50) become
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The complimentary (or transient) solution 
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Define
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Dynamical Response by Fourier Series, DFT and FFT.

The dynamic load 
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where the unknown Fourier coefficients can be computed as
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If the forcing function contains only sine terms, then the particular (steady state) solution can be found as (see Equation (56)):
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Recalled Equation (54), one has
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Solving Equation (64) for  
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Substituting Equation (65) into Equation (63) to obtain:
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Similarly, if the forcing function contains only the cosine terms, then the particular (steady state) solution can be found as:
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Finally, if the forcing function contains both sine and cosine terms, then the total response can be computed by combining both equations (66) and (67), including the constant forcing term 
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Remarks

Using Euler’s relationships, the dynamic load 
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                                         (18, Ch. 11.02)

where
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For DFT, define
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where 
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Then, the DFT pairs of Equations (21, 1, Ch. 11.04) becomes:
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and
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Since both Equations 71 and 72 do have similar operations, with the exceptions of the factor 
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of the exponential term, both these equations can be handled by the same “general_dft” program given at http://numericalmethods.eng.usf.edu/simulations/mtl/11fft/fft_civil_engg_example12.m 
Introduce the unit amplitude exponential forcing function
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into RHS of Equation (1), the steady state solution can also be obtained as (see Equation 39):
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                   (39, repeated)

Using the notations defined in Equations (23) and (53), the above equation can be written as, for a harmonic force component of amplitude 
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and the total (steady state) response due to “
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           (75)
Dynamic Response of “Water Tank Structure” by FFT.

The dynamic response 
[image: image146.wmf])

(

j

t

y

in frequency domain of a general SDOF system (such as the “water tank structure”) can be obtained by Equation (75), and the required coefficients 
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 can be computed by Equation (71). Both of these equations can be represented (except for the sign), by the following general exponential function
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where
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If Equation (71) needs be computed for 
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It is important to notice that Equation (76) has the same form as shown in the earlier Equation (74). However, the definition of 
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 in Equation (77) is different from the one shown in Equation (4, Ch. 11.05) by a negative sign in the power of 
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. Therefore, efficient FFT subroutine (with user’s specified SIGN = 1, or -1) can be utilized, as given at http://numericalmethods.eng.usf.edu/simulations/mtl/11fft/fft_civil_engg_example12.m 
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